2,672 research outputs found

    Dissipative dynamics of an extended magnetic nanostructure: Spin necklace in a metallic environment

    Full text link
    We study theoretically the dynamics of an ``xxz'' spin necklace coupled to a conduction electron sea, a model system for a nanostructure in a dissipative environment. We extract the long-time behavior via a mapping to a multichannel Coulomb gas problem followed by a scaling analysis. The strong quantum fluctuations of the necklace cause a nontrivial dependence of couplings on system size which we extract via an analysis involving the ``boundary condition changing operator'', and confirm via a detailed numerical evaluation of one case.Comment: 4 pages, 4 figure

    Flux Compactifications: Stability and Implications for Cosmology

    Full text link
    We study the dynamics of the size of an extra-dimensional manifold stabilised by fluxes. Inspecting the potential for the 4D field associated with this size (the radion), we obtain the conditions under which it can be stabilised and show that stable compactifications on hyperbolic manifolds necessarily have a negative four-dimensional cosmological constant, in contradiction with experimental observations. Assuming compactification on a positively curved (spherical) manifold we find that the radion has a mass of the order of the compactification scale, M_c, and Planck suppressed couplings. We also show that the model becomes unstable and the extra dimensions decompactify when the four-dimensional curvature is higher than a maximum value. This in particular sets an upper bound on the scale of inflation in these models: V_max \sim M_c^2 M_P^2, independently of whether the radion or other field is responsible for inflation. We comment on other possible contributions to the radion potential as well as finite temperature effects and their impact on the bounds obtained.Comment: 16 pages, 1 figure, LaTeX; v2: typos fixed and references adde

    Optical Identification of the ASCA Large Sky Survey

    Get PDF
    We present results of optical identification of the X-ray sources detected in the ASCA Large Sky Survey. Optical spectroscopic observations were done for 34 X-ray sources which were detected with the SIS in the 2-7 keV band above 3.5 sigma. The sources are identified with 30 AGNs, 2 clusters of galaxies, and 1 galactic star. Only 1 source is still unidentified. The flux limit of the sample corresponds to 1 x 10^{-13} erg s^{-1} cm^{-2} in the 2-10 keV band. Based on the sample, the paper discusses optical and X-ray spectral properties of the AGNs, contribution of the sources to the Cosmic X-ray Background, and redshift and luminosity distributions of the AGNs. An interesting result is that the redshift distribution of the AGNs suggests a deficiency of high-redshift (0.5 10^{44} erg s^{-1}) absorbed narrow-line AGNs (so called type 2 QSOs).Comment: Accepted for publication in ApJ. 57 pages with 13 figures, 9 JPG plates, 5 additional PS tables. Original EPS plates (gzipped format ~1Mbyte/plate) and TeX tables are available from ftp://ftp.kusastro.kyoto-u.ac.jp/pub/akiyama/0001289

    Population Frequencies Determined by Next-generation Sequencing Provide Strategies for Prospective HLA Epitope Matching for Transplantation

    Get PDF
    Compatibility for human leukocyte antigen (HLA) genes between transplant donors and recipients improves graft survival but prospective matching is rarely performed due to the vast heterogeneity of this gene complex. To reduce complexity, we have combined next-generation sequencing and in silico mapping to determine population frequencies and matching probabilities of 150 antibody-binding eplets across all 11 classical HLA genes in 2000 ethnically heterogeneous renal patients and donors. We show that eplets are more common and more uniformly distributed between donors and recipients than the respective HLA isoforms. Simulation of targeted eplet matching shows that a high degree of overall compatibility, and perfect identity at the clinically important HLA class II loci, can be obtained within a patient waiting list of approximately 250 subjects. Internal epitope-based allocation is thus feasible for most major renal transplant programs, while regional or national sharing may be required for other solid organs

    Cosmology of codimension-two braneworlds

    Full text link
    We present a comprehensive study of the cosmological solutions of 6D braneworld models with azimuthal symmetry in the extra dimensions, moduli stabilization by flux or a bulk scalar field, and which contain at least one 3-brane that could be identified with our world. We emphasize an unusual property of these models: their expansion rate depends on the 3-brane tension either not at all, or in a nonstandard way, at odds with the naive expected dimensional reduction of these systems to 4D general relativity at low energies. Unlike other braneworld attempts to find a self-tuning solution to the cosmological constant problem, the apparent failure of decoupling in these models is not associated with the presence of unstabilized moduli; rather it is due to automatic cancellation of the brane tension by the curvature induced by the brane. This provides some corroboration for the hope that these models provide a distinctive step toward understanding the smallness of the observed cosmological constant. However, we point out some challenges for obtaining realistic cosmology within this framework.Comment: 30 pages, 4 figures; generalized result for nonconventional Friedmann equation, added referenc

    Crossover from thermal hopping to quantum tunneling in Mn_{12}Ac

    Full text link
    The crossover from thermal hopping to quantum tunneling is studied. We show that the decay rate Γ\Gamma with dissipation can accurately be determined near the crossover temperature. Besides considering the Wentzel-Kramers-Brillouin (WKB) exponent, we also calculate contribution of the fluctuation modes around the saddle point and give an extended account of a previous study of crossover region. We deal with two dangerous fluctuation modes whose contribution can't be calculated by the steepest descent method and show that higher order couplings between the two dangerous modes need to be taken into considerations. At last the crossover from thermal hopping to quantum tunneling in the molecular magnet Mn_{12}Ac is studied.Comment: 10 pages, 3 figure

    Macroscopic Quantum Tunneling and Dissipation of Domain Wall in Ferromagnetic Metals

    Full text link
    The depinning of a domain wall in ferromagentic metal via macroscopic quantum tunneling is studied based on the Hubbard model. The dynamics of the magnetization verctor is shown to be governed by an effective action of Heisenberg model with a term non-local in time that describes the dissipation due to the conduction electron. Due to the existence of the Fermi surface there exists Ohmic dissipation even at zero temperature, which is crucially different from the case of the insulator. Taking into account the effect of pinning and the external magnetic field the action is rewritten in terms of a collective coordinate, the position of the wall, QQ. The tunneling rate for QQ is calculated by use of the instanton method. It is found that the reduction of the tunneling rate due to the dissipation is very large for a thin domain wall with thickness of a few times the lattice spacing, but is negligible for a thick domain wall. Dissipation due to eddy current is shown to be negligible for a wall of mesoscopic size.Comment: of pages 26, to appear in "Quantum Tunneling of Magnetization, ed. B. Barbara and L. Gunther (Kluwer Academic Pub.), Figures available by FAX (81-48-462-4649

    Work and heat fluctuations in two-state systems: a trajectory thermodynamics formalism

    Full text link
    Two-state models provide phenomenological descriptions of many different systems, ranging from physics to chemistry and biology. We investigate work fluctuations in an ensemble of two-state systems driven out of equilibrium under the action of an external perturbation. We calculate the probability density P(W) that a work equal to W is exerted upon the system along a given non-equilibrium trajectory and introduce a trajectory thermodynamics formalism to quantify work fluctuations in the large-size limit. We then define a trajectory entropy S(W) that counts the number of non-equilibrium trajectories P(W)=exp(S(W)/kT) with work equal to W. A trajectory free-energy F(W) can also be defined, which has a minimum at a value of the work that has to be efficiently sampled to quantitatively test the Jarzynski equality. Within this formalism a Lagrange multiplier is also introduced, the inverse of which plays the role of a trajectory temperature. Our solution for P(W) exactly satisfies the fluctuation theorem by Crooks and allows us to investigate heat-fluctuations for a protocol that is invariant under time reversal. The heat distribution is then characterized by a Gaussian component (describing small and frequent heat exchange events) and exponential tails (describing the statistics of large deviations and rare events). For the latter, the width of the exponential tails is related to the aforementioned trajectory temperature. Finite-size effects to the large-N theory and the recovery of work distributions for finite N are also discussed. Finally, we pay particular attention to the case of magnetic nanoparticle systems under the action of a magnetic field H where work and heat fluctuations are predicted to be observable in ramping experiments in micro-SQUIDs.Comment: 28 pages, 14 figures (Latex

    High sensitivity GEM experiment on double beta decay of 76-Ge

    Full text link
    The GEM project is designed for the next generation 2 beta decay experiments with 76-Ge. One ton of ''naked'' HP Ge detectors (natural at the first GEM-I phase and enriched in 76-Ge to 86% at the second GEM-II stage) are operating in super-high purity liquid nitrogen contained in the Cu vacuum cryostat (sphere with diameter 5 m). The latest is placed in the water shield. Monte Carlo simulation evidently shows that sensitivity of the experiment (in terms of the T1/2 limit for neutrinoless 2 beta decay) is 10^27 yr with natural HP Ge crystals and 10^28 yr with enriched ones. These bounds corresponds to the restrictions on the neutrino mass less than 0.05 eV and 0.015 eV with natural and enriched detectors, respectively. Besides, the GEM-I set up could advance the current best limits on the existence of neutralinos - as dark matter candidates - by three order of magnitudes, and at the same time would be able to identify unambiguously the dark matter signal by detection of its seasonal modulation.Comment: LaTeX, 20 pages, 4 figure

    Measurement of triple gauge boson couplings from WW production at LEP energies up to 189 GeV

    Get PDF
    A measurement of triple gauge boson couplings is presented, based on W-pair data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass energy of 189 GeV with an integrated luminosity of 183 pb^-1. After combining with our previous measurements at centre-of-mass energies of 161-183 GeV we obtain k_g=0.97 +0.20 -0.16, g_1^z=0.991 +0.060 -0.057 and lambda_g=-0.110 +0.058 -0.055, where the errors include both statistical and systematic uncertainties and each coupling is determined by setting the other two couplings to their SM values. These results are consistent with the Standard Model expectations.Comment: 28 pages, 8 figures, submitted to Eur. Phys. J.
    • …
    corecore