23 research outputs found

    Nematode endoparasites do not codiversify with their stick insect hosts.

    Get PDF
    Host-parasite coevolution stems from reciprocal selection on host resistance and parasite infectivity, and can generate some of the strongest selective pressures known in nature. It is widely seen as a major driver of diversification, the most extreme case being parallel speciation in hosts and their associated parasites. Here, we report on endoparasitic nematodes, most likely members of the mermithid family, infecting different Timema stick insect species throughout California. The nematodes develop in the hemolymph of their insect host and kill it upon emergence, completely impeding host reproduction. Given the direct exposure of the endoparasites to the host's immune system in the hemolymph, and the consequences of infection on host fitness, we predicted that divergence among hosts may drive parallel divergence in the endoparasites. Our phylogenetic analyses suggested the presence of two differentiated endoparasite lineages. However, independently of whether the two lineages were considered separately or jointly, we found a complete lack of codivergence between the endoparasitic nematodes and their hosts in spite of extensive genetic variation among hosts and among parasites. Instead, there was strong isolation by distance among the endoparasitic nematodes, indicating that geography plays a more important role than host-related adaptations in driving parasite diversification in this system. The accumulating evidence for lack of codiversification between parasites and their hosts at macroevolutionary scales contrasts with the overwhelming evidence for coevolution within populations, and calls for studies linking micro- versus macroevolutionary dynamics in host-parasite interactions

    Physicochemical and sensorial properties of grapefruit jams as affected by processing

    Full text link
    Jam is an effective and tasty way of preserving fruit. Jam processing procedures as well as storage conditions and duration are important factors for jam quality. Traditional jam processing involves the application of severe thermal treatments that imply undesirable changes in the product quality characteristics such as colour, texture, flavour and nutritional and functional value. In this work, osmotic dehydration (OD) and/or microwave energy (MW) was proven as adequate to obtain jam with the typical characteristics of water content, degree Brix, pH and water activity of jam obtained by conventional thermal heating. The sensory evaluation carried out to compare the product showed that samples submitted to more intense heating treatments (conventional or MW) had significantly higher scores in colour saturation, brightness, grapefruit taste and extensibility than OD or OD+MW ones. As deduced from the obtained results, OD treatment prevents grapefruit colour changes, and mild MW heating contributes to increase the consistency and decrease the extensibility of the obtained jam. In this way, OD+MW jam was preferred by assessors mainly due to its higher consistency. The sample obtained by this procedure was stable during storage.The authors would like to thank the Ministerio de Educacion y Ciencia for the financial support given throughout the Project AGL 2005-05994. The language revision of this paper was funded by the Universidad Politecnica de Valencia, Spain.Igual Ramo, M.; GarcĂ­a MartĂ­nez, EM.; Camacho Vidal, MM.; MartĂ­nez Navarrete, N. (2013). Physicochemical and sensorial properties of grapefruit jams as affected by processing. Food and Bioprocess Technology. 6(1):177-185. https://doi.org/10.1007/s11947-011-0696-2S17718561AENOR (2009). Sensory analysis. Methodology. Paired comparison test. UNE-EN-ISO 5495.AOAC. (2000). Official methods of analysis of AOAC International (17th ed.). Gaithersburg: AOAC International.Baker, R.-A., Berry, N., Hui, Y.-H., & Barrett, D.-M. (2005). Fruit preserves and jams. In Processing fruits: science and technology (2nd ed., pp. 113–125). Boca RatĂłn: CRC Press.Bodart, M., de Peñaranda, R., Deneyer, A., & Flamant, G. (2008). Photometry and colorimetry characterisation of materials in daylighting evaluation tools. Building and Environment, 43, 2046–2058.BOE (1990). Real Decreto 670/1990, de 25 de mayo, por el que se aprueba la norma de calidad para confituras, jaleas y marmalade de frutas, crema de castañas y mermelada de frutas. BOE NÂș 130 (31/5/1990), 15140–15144.Bourne, M. (1982). Food texture and viscosity—concept and measurement. New York: Academic.Cañumir, J.-A., Celis, J.-E., Brujin, J., & Vidal, L. (2002). Pasteurisation of apple juice by using microwaves. Lebensmittel-Wissenschaft und Technologie, 35, 389–392.Contreras, C., MartĂ­n-Esparza, M.-E., MartĂ­nez-Navarrete, N., & Chiralt, A. (2008). Influence of microwave application on convective drying: effects on drying kinetics, and optical and mechanical properties of apple and strawberry. Journal of Food Engineering, 88, 55–64.Dervisi, P., Lamb, J., & Zabetakis, I. (2001). High pressure processing in jam manufacture: effects on textural and color properties. Food Chemistry, 73, 85–91.Deyhim, F., Garica, K., Lopez, E., Gonzalez, J., Ino, S., Garcia, M., et al. (2006). Citrus juice modulates bone strength in male senescent rat model of osteoporosis. Nutrition, 22(5), 559–563.GarcĂ­a-MartĂ­nez, E., Ruiz-Diaz, G., MartĂ­nez-MonzĂł, J., Camacho, M.-M., MartĂ­nez-Navarrete, N., & Chiralt, A. (2002). Jam manufacture with osmodehydrated fruit. Food Research International, 35, 301–306.Igual, M., GarcĂ­a-MartĂ­nez, E., Camacho, M.-M., & MartĂ­nez-Navarrete, N. (2010a). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry, 118, 291–299.Igual, M., Contreras, C., & MartĂ­nez-Navarrete, N. (2010b). Non-conventional techniques to obtain grapefruit jam. Innovative Food Science and Emerging Technologies, 11(2), 335–341.Meilgaard, M., Civille, G.-V., & Carr, B.-T. (1999). Attribute differences test. Pairwise ranking test: Friedman analysis. Sensory evaluation techniques (pp. 103–106). Boca RatĂłn: CRC Press.Moraga, M.-J., Moraga, G., Fito, P. J., & MartĂ­nez-Navarrete, N. (2009). Effect of vacuum impregnation with calcium lactate on the osmotic dehydration kinetics and quality of osmodehydrated grapefruit. Journal of Food Engineering, 90, 372–379.Nikdel, S., Chen, C., Parish, M., MacKellar, D., & Friedrich, L. (1993). Pasteurization of citrus juice with microwaves energy in a continuous-flow unit. Journal of Agricultural and Food Chemistry, 41, 2116–2119.Poulose, S.-M., Harris, E.-D., & Patil, B.-S. (2005). Citrus limonoids induce apoptosis in human neuroblastoma cells and have radical scavenging activity. Journal of Nutrition, 135, 870–877.Sanchez-Moreno, C., Plaza, L., De Ancos, B., & Cano, M.-P. (2003). Quantitative bioactive compounds assessment and their relative contribution to the antioxidant capacity of commercial orange juices. Journal of the Science of Food and Agriculture, 83, 430–439.Shi, X.-Q., Chiralt, A., Fito, P., Serra, J., Escoin, C., & Gasque, L. (1996). Application of osmotic dehydration technology on jam processing. Drying Technology, 14(3&4), 841–857.TĂĄrrega, A., & Costell, E. (2007). Colour and consistency of semi-solid dairy desserts: instrumental and sensory measurements. Journal of Food Engineering, 78, 655–661.Vanamala, J., Reddivari, L., Yoo, K.-S., Pike, L.-M., & Patil, B.-S. (2006). Variation in the content of bioactive flavonoid in different brands of orange and grapefruit juices. Journal of Food Composition and Analysis, 19(2–3), 157–166.Wicklund, T., Rosenfeld, H.-J., Martinsen, B.-K., SundfĂžrb, M.-W., Lea, P., Bruun, T., et al. (2005). Antioxidant capacity and colour of strawberry jam as influenced by cultivar and storage conditions. LWT-Food Science and Technology, 38(4), 387–391.Yu, L.-L., Zhou, K.-K., & Parry, J. (2005). Antioxidant properties of cold-pressed black caraway, carrot, cranberry, and hemp seed oils. Food Chemistry, 91, 723–729

    Stabilizing of Subspaces Based on DPGA and Chaos Genetic Algorithm for Optimizing State Feedback Controller

    Get PDF
    The main purpose of the paper is to optimize state feedback parameters using intelligent method, GA, Hermite-Biehler, and chaos algorithm. GA is implemented for local search but it has some deficiencies such as trapping into a local minimum and slow convergence, so the combination of Hermite-Biehler and chaos algorithm has been added to GA to avoid its deficiencies. Dividing search space is usually done by distributed population genetic algorithm (DPGA). Moreover, using generalized Hermite-Biehler Theorem can find the domain of parameters. In order to speed up the convergence at the first step, Hermite-Biehler method finds some intervals for controller, in the next step the GA will be added, and, finally, chaos disturbance will help the algorithm to reach a global minimum. Therefore, the proposed method can optimize the parameters of the state feedback controller
    corecore