124 research outputs found

    RNA Methylation in ncRNA: Classes, Detection, and Molecular Associations

    Get PDF
    Nearly all classes of coding and non-coding RNA undergo post-transcriptional modification, as more than 150 distinct modification types have been reported. Since RNA modifications were first described over 50 years ago, our understanding of their functional relevance in cellular control mechanisms and phenotypes has truly progressed only in the last 15 years due to advancements in detection and experimental techniques. Specifically, the phenomenon of RNA methylation in the context of ncRNA has emerged as a novel process in the arena of epitranscriptomics. Methylated ncRNA molecules may indeed contribute to a potentially vast functional panorama, from regulation of post-transcriptional gene expression to adaptive cellular responses. Recent discoveries have uncovered novel dynamic mechanisms and new layers of complexity, paving the way to a greater understanding of the role of such phenomena within the broader molecular cellular context of human disease

    MiR-34a/c-Dependent PDGFR-α/β Downregulation Inhibits Tumorigenesis and Enhances TRAIL-Induced Apoptosis in Lung Cancer.

    Get PDF
    Lung cancer is the leading cause of cancer mortality in the world today. Although some advances in lung cancer therapy have been made, patient survival is still poor. MicroRNAs (miRNAs) can act as oncogenes or tumor-suppressor genes in human malignancy. The miR-34 family consists of tumor-suppressive miRNAs, and its reduced expression has been reported in various cancers, including non-small cell lung cancer (NSCLC). In this study, we found that miR-34a and miR-34c target platelet-derived growth factor receptor alpha and beta (PDGFR-α and PDGFR-β), cell surface tyrosine kinase receptors that induce proliferation, migration and invasion in cancer. MiR-34a and miR-34c were downregulated in lung tumors compared to normal tissues. Moreover, we identified an inverse correlation between PDGFR-α/β and miR-34a/c expression in lung tumor samples. Finally, miR-34a/c overexpression or downregulation of PDGFR-α/β by siRNAs, strongly augmented the response to TNF-related apoptosis inducing ligand (TRAIL) while reducing migratory and invasive capacity of NSCLC cells

    Lung cancer risk test trial: study design, participant baseline characteristics, bronchoscopy safety, and establishment of a biospecimen repository

    Get PDF
    BACKGROUND: The Lung Cancer Risk Test (LCRT) trial is a prospective cohort study comparing lung cancer incidence among persons with a positive or negative value for the LCRT, a 15 gene test measured in normal bronchial epithelial cells (NBEC). The purpose of this article is to describe the study design, primary endpoint, and safety; baseline characteristics of enrolled individuals; and establishment of a bio-specimen repository. METHODS/DESIGN: Eligible participants were aged 50-90 years, current or former smokers with 20 pack-years or more cigarette smoking history, free of lung cancer, and willing to undergo bronchoscopic brush biopsy for NBEC sample collection. NBEC, peripheral blood samples, baseline CT, and medical and demographic data were collected from each subject. DISCUSSION: Over a two-year span (2010-2012), 403 subjects were enrolled at 12 sites. At baseline 384 subjects remained in study and mean age and smoking history were 62.9 years and 50.4 pack-years respectively, with 34% current smokers. Obstructive lung disease (FEV1/FVC \u3c0.7) was present in 157 (54%). No severe adverse events were associated with bronchoscopic brushing. An NBEC and matched peripheral blood bio-specimen repository was established. The demographic composition of the enrolled group is representative of the population for which the LCRT is intended. Specifically, based on baseline population characteristics we expect lung cancer incidence in this cohort to be representative of the population eligible for low-dose Computed Tomography (LDCT) lung cancer screening. Collection of NBEC by bronchial brush biopsy/bronchoscopy was safe and well-tolerated in this population. These findings support the feasibility of testing LCRT clinical utility in this prospective study. If validated, the LCRT has the potential to significantly narrow the population of individuals requiring annual low-dose helical CT screening for early detection of lung cancer and delay the onset of screening for individuals with results indicating low lung cancer risk. For these individuals, the small risk incurred by undergoing once in a lifetime bronchoscopic sample collection for LCRT may be offset by a reduction in their CT-related risks. The LCRT biospecimen repository will enable additional studies of genetic basis for COPD and/or lung cancer risk. TRIAL REGISTRATION: The LCRT Study, NCT 01130285, was registered with Clinicaltrials.gov on May 24, 2010

    Notch3-dependent β-catenin signaling mediates EGFR TKI drug persistence in EGFR mutant NSCLC

    Get PDF
    EGFR tyrosine kinase inhibitors cause dramatic responses in EGFR-mutant lung cancer, but resistance universally develops. The involvement of β-catenin in EGFR TKI resistance has been previously reported, however, the precise mechanism by which β-catenin activation contributes to EGFR TKI resistance is not clear. Here, we show that EGFR inhibition results in the activation of β-catenin signaling in a Notch3-dependent manner, which facilitates the survival of a subset of cells that we call “adaptive persisters”. We previously reported that EGFR-TKI treatment rapidly activates Notch3, and here we describe the physical association of Notch3 with β-catenin, leading to increased stability and activation of β-catenin. We demonstrate that the combination of EGFR-TKI and a β-catenin inhibitor inhibits the development of these adaptive persisters, decreases tumor burden, improves recurrence free survival, and overall survival in xenograft models. These results supports combined EGFR-TKI and β-catenin inhibition in patients with EGFR mutant lung cancer

    Restoration of Altered MicroRNA Expression in the Ischemic Heart with Resveratrol

    Get PDF
    Resveratrol, a constituent of red wine, is important for cardioprotection. MicroRNAs are known regulators for genes involved in resveratrol-mediated cardiac remodeling and the regulatory pathway involving microRNA has not been studied so far.We explored the cardioprotection by resveratrol in ischemia/reperfusion model of rat and determined cardiac functions. miRNA profile was determined from isolated RNA using quantitative Real-time PCR based array. Systemic analyses of miRNA array and theirs targets were determined using a number of computational approaches.Cardioprotection by resveratrol and its derivative in ischemia/reperfusion [I/R] rat model was examined with miRNA expression profile. Unique expression pattern were found for each sample, particularly with resveratrol [pure compound] and longevinex [commercial resveratrol formulation] pretreated hearts. Longevinex and resveratrol pretreatment modulates the expression pattern of miRNAs close to the control level based on PCA analyses. Differential expression was observed in over 25 miRNAs, some of them, such as miR-21 were previously implicated in cardiac remodeling. The target genes for the differentially expressed miRNA include genes of various molecular function such as metal ion binding, sodium-potassium ion, transcription factors, which may play key role in reducing I/R injury.Rats pretreated with resveratrol for 3 weeks leads to significant cardioprotection against ischemia/reperfusion injury. A unique signature of miRNA profile is observed in control heart pretreated with resveratrol or longevinex. We have determined specific group of miRNA in heart that have altered during IR injuries. Most of those altered microRNA expressions modulated close to their basal level in resveratrol or longevinex treated I/R mice

    miR-100-5p inhibition induces apoptosis in dormant prostate cancer cells and prevents the emergence of castration-resistant prostate cancer

    Get PDF
    Carcinoma of the prostate is the most common cancer in men. Treatment of aggressive prostate cancer involves a regiment of radical prostectomy, radiation therapy, chemotherapy and hormonal therapy. Despite significant improvements in the last decade, the treatment of prostate cancer remains unsatisfactory, because a significant fraction of prostate cancers develop resistance to multiple treatments and become incurable. This prompts an urgent need to investigate the molecular mechanisms underlying the evolution of therapy-induced resistance of prostate cancer either in the form of castration-resistant prostate cancer (CRPC) or transdifferentiated neuroendocrine prostate cancer (NEPC). By analyzing micro-RNA expression profiles in a set of patient-derived prostate cancer xenograft tumor lines, we identified miR-100-5p as one of the key molecular components in the initiation and evolution of androgen ablation therapy resistance in prostate cancer. In vitro results showed that miR-100-5p is required for hormone-independent survival and proliferation of prostate cancer cells post androgen ablation. In Silico target predictions revealed that miR-100-5p target genes are involved in key aspects of cancer progression, and are associated with clinical outcome. Our results suggest that mir-100-5p is a possible therapeutic target involved in prostate cancer progression and relapse post androgen ablation therapy

    Acrolein Induces Endoplasmic Reticulum Stress and Causes Airspace Enlargement

    Get PDF
    BACKGROUND: Given the relative abundance and toxic potential of acrolein in inhaled cigarette smoke, it is surprising how little is known about the pulmonary and systemic effects of acrolein. Here we test the hypothesis whether systemic administration of acrolein could cause endoplasmic reticulum (ER) stress, and lung cell apoptosis, leading to the enlargement of the alveolar air spaces in rats. METHODS: Acute and chronic effects of intraperitoneally administered acrolein were tested. Mean alveolar airspace area was measured by using light microscopy and imaging system software. TUNEL staining and immunohistochemistry (IHC) for active caspase 3 and Western blot analysis for active caspase 3, and caspase 12 were performed to detect apoptosis. The ER-stress related gene expression in the lungs was determined by Quantitative real-time PCR analysis. Acrolein-protein adducts in the lung tissue were detected by IHC. RESULTS: Acute administration of acrolein caused a significant elevation of activated caspase 3, upregulation of VEGF expression and induced ER stress proteins in the lung tissue. The chronic administration of acrolein in rats led to emphysematous lung tissue remodeling. TUNEL staining and IHC for cleaved caspase 3 showed a large number of apoptotic septal cells in the acrolein-treated rat lungs. Chronic acrolein administration cause the endoplasmic reticulum stress response manifested by significant upregulation of ATF4, CHOP and GADd34 expression. In smokers with COPD there was a considerable accumulation of acrolein-protein adducts in the inflammatory, airway and vascular cells. CONCLUSIONS: Systemic administration of acrolein causes endoplasmic reticulum stress response, lung cell apoptosis, and chronic administration leads to the enlargement of the alveolar air spaces and emphysema in rats. The substantial accumulation of acrolein-protein adducts in the lungs of COPD patients suggest a role of acrolein in the pathogenesis of emphysema
    corecore