73 research outputs found

    VAGO method for the solution of elliptic second-order boundary value problems

    Get PDF
    Mathematical physics problems are often formulated using differential oprators of vector analysis - invariant operators of first order, namely, divergence, gradient and rotor operators. In approximate solution of such problems it is natural to employ similar operator formulations for grid problems, too. The VAGO (Vector Analysis Grid Operators) method is based on such a methodology. In this paper the vector analysis difference operators are constructed using the Delaunay triangulation and the Voronoi diagrams. Further the VAGO method is used to solve approximately boundary value problems for the general elliptic equation of second order. In the convection-diffusion-reaction equation the diffusion coefficient is a symmetric tensor of second order

    Flux-splitting schemes for parabolic problems

    Full text link
    To solve numerically boundary value problems for parabolic equations with mixed derivatives, the construction of difference schemes with prescribed quality faces essential difficulties. In parabolic problems, some possibilities are associated with the transition to a new formulation of the problem, where the fluxes (derivatives with respect to a spatial direction) are treated as unknown quantities. In this case, the original problem is rewritten in the form of a boundary value problem for the system of equations in the fluxes. This work deals with studying schemes with weights for parabolic equations written in the flux coordinates. Unconditionally stable flux locally one-dimensional schemes of the first and second order of approximation in time are constructed for parabolic equations without mixed derivatives. A peculiarity of the system of equations written in flux variables for equations with mixed derivatives is that there do exist coupled terms with time derivatives

    Difference schemes with operator factors

    No full text
    corecore