1,014 research outputs found

    X-ray studies of the distribution function of crystalline grains over orientation angles in mosaic crystals

    Get PDF
    The paper is devoted to theoretical and experimental studies of the new approach to X-ray diagnostics of mosaic crystals being proposed. The model of the scattering process on the crystals with the arbitrary distribution function of the crystalline grains over orientation angles is considered in detail. Experimental setup created on the base of this model is described as well as the first results of experimental studies conducted using highly oriented pyrolytic graphite with mosaicity 0.4 and 0.8 degrees

    Nonuniform Spin Triplet Superconductivity due to Antisymmetric Spin-Orbit Coupling in Noncentrosymmetric Superconductor CePt3_3Si

    Full text link
    We show that the nonuniform state (Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state) of the spin triplet superconductivity in noncentrosymmetric systems is stabilized by antisymmetric spin-orbit coupling even if the magnetic field is absent. The transition temperature of the spin triplet superconductivity is reduced by the antisymmetric spin-orbit coupling in general. This pair breaking effect is shown to be similar to the Pauli pair breaking effect due to magnetic field for the spin singlet superconductivity, in which FFLO state is stabilized near the Pauli limit (or Chandrasekhar-Clogston limit) of external magnetic field. Since there are gapless excitations in nonuniform superconducting state, some physical quantities such as specific heat and penetration depth should obey the power low temperature-dependences. We discuss the possibility of the realization of nonuniform state in CePt3_3Si.Comment: 8 pages, 6 figure

    Entangled-Photon Imaging of a Pure Phase Object

    Full text link
    We demonstrate experimentally and theoretically that a coherent image of a pure phase object may be obtained by use of a spatially incoherent illumination beam. This is accomplished by employing a two-beam source of entangled photons generated by spontaneous parametric down-conversion. Though each of the beams is, in and of itself, spatially incoherent, the pair of beams exhibits higher-order inter-beam coherence. One of the beams probes the phase object while the other is scanned. The image is recorded by measuring the photon coincidence rate using a photon-counting detector in each beam. Using a reflection configuration, we successfully imaged a phase object implemented by a MEMS micro-mirror array. The experimental results are in accord with theoretical predictions.Comment: 11 pages, 3 figures, submittedto Phys. Rev. Let

    Discovery of an unusual bright eclipsing binary with the longest known period: TYC 2505-672-1 / MASTER OT J095310.04+335352.8

    Full text link
    We report on the MASTER Global Robotic Net discovery of an eclipsing binary, MASTER OT J095310.04+335352.8, previously known as unremarkable star TYC 2505-672-1, which displays extreme orbital parameters. The orbital period P=69.1 yr is more than 2.5 times longer than that of epsilon-Aurigae, which is the previous record holder. The light curve is characterized by an extremely deep total eclipse with a depth of more than 4.5 mag, which is symmetrically shaped and has a total duration of 3.5 yrs. The eclipse is essentially gray. The spectra acquired with the Russian 6 m BTA telescope both at minimum and maximum light mainly correspond to an M0-1III--type red giant, but the spectra taken at the bottom of eclipse show small traces of a sufficiently hot source. The observed properties of this system can be better explained as the red giant eclipsed by a large cloud (the disk) of small particles surrounding the invisible secondary companion.Comment: 8 figures, 9 pages, Astronomy and astrophysics in prin

    Photometric observations of the supernova 2009nr

    Full text link
    We present the results of our UBVRI CCD photometry for the second brightest supernova of 2009, SN 2009nr, discovered during a sky survey with the telescopes of the MASTER robotic network. Its light and color curves and bolometric light curves have been constructed. The light-curve parameters and the maximum luminosity have been determined. SN 2009nr is shown to be similar in light-curve shape and maximum luminosity to SN 1991T, which is the prototype of the class of supernovae Ia with an enhanced luminosity. SN 2009nr exploded far from the center of the spiral galaxy UGC 8255 and most likely belongs to its old halo population. We hypothesize that this explosion is a consequence of the merger of white dwarfs

    Optical polarization observations with the MASTER robotic net

    Full text link
    We present results of optical polarization observations performed with the MASTER robotic net for three types of objects: gamma-ray bursts, supernovae, and blazars. For the Swift gamma-ray bursts GRB100906A, GRB110422A, GRB121011A, polarization observations were obtained during very early stages of optical emission. For GRB100906A it was the first prompt optical polarization observation in the world. Photometry in polarizers is presented for Type Ia Supernova 2012bh during 20 days, starting on March 27, 2012. We find that the linear polarization of SN 2012bh at the early stage of the envelope expansion was less than 3%. Polarization measurements for the blazars OC 457, 3C 454.3, QSO B1215+303, 87GB 165943.2+395846 at single nights are presented. We infer the degree of the linear polarization and polarization angle. The blazars OC 457 and 3C 454.3 were observed during their periods of activity. The results show that MASTER is able to measure substantially polarized light; at the same time it is not suitable for determining weak polarization (less than 5%) of dim objects (fainter than 16m^m). Polarimetric observations of the optical emission from gamma-ray bursts and supernovae are necessary to investigate the nature of these transient objects.Comment: 31 pages, 12 figures, 4 tables; Exposure times in Table 2 have been correcte

    Novel Pressure Phase Diagram of Heavy Fermion Superconductor CePt3_{3}Si Investigated by ac Calorimetry

    Full text link
    The pressure dependences of the antiferromagnetic and superconducting transition temperatures have been investigated by ac heat capacity measurement under high pressures for the heavy-fermion superconductor CePt3_3Si without inversion symmetry in the tetragonal structure. The N\'{e}el temperature TNT_{\rm N} = 2.2 K decreases with increasing pressure and becomes zero at the critical pressure PAFP_{\rm AF} \simeq 0.6 GPa. On the other hand, the superconducting phase exists in a wider pressure region from ambient pressure to about 1.5 GPa. The pressure phase diagram of CePt3_3Si is thus very unique and has never been reported before for other heavy fermion superconductors.Comment: 4 pages and 3 figures. This paper will be published in the July issue of J. Phys. Soc. Jp
    corecore