1,547 research outputs found

    Forward observables at RHIC, the Tevatron run II and the LHC

    Get PDF
    We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude (rho parameter) for present and future pp and pbar p colliders, and on total cross sections for gamma p -> hadrons at cosmic-ray energies and for gamma gamma -> hadrons up to sqrt(s)=1 TeV. These predictions are based on a study of many possible analytic parametrisations and invoke the current hadronic dataset at t=0. The uncertainties on total cross sections, including the systematic theoretical errors, reach 1% at RHIC, 3% at the Tevatron, and 10% at the LHC, whereas those on the rho parameter are respectively 10%, 17%, and 26%.Comment: 11 pages, 2 figures, LaTeX, presented at the Second International "Cetraro" Workshop & NATO Advanced Research Workshop "Diffraction 2002", Alushta, Crimea, Ukraine, August 31 - September 6, 200

    Premartensitic Transition in Ni2+xMn1-xGa Heusler Alloys

    Full text link
    The temperature dependencies of the resistivity and magnetization of a series of Ni2+XMn1-XGa (X = 0 - 0.09) alloys were investigated. Along with the anomalies associated with ferromagnetic and martensitic transitions, well-defined anomalies were observed at the temperature of premartensitic transformation. The premartensitic phase existing in a temperature range 200 - 260 K in the stoichiometric Ni2MnGa is suppressed by the martensitic phase with increasing Ni content and vanishes in Ni2.09Mn0.91Ga composition

    Photoproduction of vector mesons in the Soft Dipole Pomeron model

    Get PDF
    Exclusive photoproduction of all vector mesons by real and virtual photons is considered in the Soft Dipole Pomeron model. It is emphasized that being the Pomeron in this model a double Regge pole with intercept equal to one, we are led to rising cross-sections but the unitarity bounds are not violated. It is shown that all available data for rho, omega, phi, J/psi and Upsilon in the region of energies 1.7 <= W <= 250 GeV and photon virtualities 0 <= Q^2 <= 35 GeV^2, including the differential cross-sections in the region of transfer momenta 0 <= |t| <= 1.6 GeV^2, are well described by the model.Comment: 17 pages, 19 figure

    Benchmarks for the Forward Observables at RHIC, the Tevatron-run II and the LHC

    Get PDF
    We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude (rho parameter) for present and future pp and pbar p colliders, and on total cross sections for gamma p -> hadrons at cosmic-ray energies and for gamma gamma-> hadrons up to sqrt{s}=1 TeV. These predictions are based on an extensive study of possible analytic parametrisations invoking the biggest hadronic dataset available at t=0. The uncertainties on total cross sections, including the systematic errors due to contradictory data points from FNAL, can reach 1.9% at RHIC, 3.1% at the Tevatron, and 4.8% at the LHC, whereas those on the rho parameter are respectively 5.4%, 5.2%, and 5.4%.Comment: 11 pages, 2 figures, 4 tables, RevTeX

    Influence of intermartensitic transitions on transport properties of Ni2.16Mn0.84Ga alloy

    Full text link
    Magnetic, transport, and x-ray diffraction measurements of ferromagnetic shape memory alloy Ni2.16_{2.16}Mn0.84_{0.84}Ga revealed that this alloy undergoes an intermartensitic transition upon cooling, whereas no such a transition is observed upon subsequent heating. The difference in the modulation of the martensite forming upon cooling from the high-temperature austenitic state [5-layered (5M) martensite], and the martensite forming upon the intermartensitic transition [7-layered (7M) martensite] strongly affects the magnetic and transport properties of the alloy and results in a large thermal hysteresis of the resistivity ρ\rho and magnetization MM. The intermartensitic transition has an especially marked influence on the transport properties, as is evident from a large difference in the resistivity of the 5M and 7M martensite, (ρ5Mρ7M)/ρ5M15(\rho_{\mathrm{5M}} - \rho_{\mathrm{7M}})/\rho _{\mathrm{5M}} \approx 15%, which is larger than the jump of resistivity at the martensitic transition from the cubic austenitic phase to the monoclinic 5M martensitic phase. We assume that this significant difference in ρ\rho between the martensitic phases is accounted for by nesting features of the Fermi surface. It is also suggested that the nesting hypothesis can explain the uncommon behavior of the resistivity at the martensitic transition, observed in stoichiometric and near-stoichiometric Ni-Mn-Ga alloys.Comment: 7 pages, 6 figures, REVTEX

    Phase diagram of superfluid 3He in "nematically ordered" aerogel

    Full text link
    Results of experiments with liquid 3He immersed in a new type of aerogel are described. This aerogel consists of Al2O3 strands which are nearly parallel to each other, so we call it as a "nematically ordered" aerogel. At all used pressures a superfluid transition was observed and a superfluid phase diagram was measured. Possible structures of the observed superfluid phases are discussed.Comment: 6 pages, 8 figures. Submitted to Pis'ma v ZhETF (JETP Letters

    The soft and the hard pomerons in hadron elastic scattering at small t

    Full text link
    We consider simple-pole descriptions of soft elastic scattering for pp, pbar p, pi+ p, pi- p, K+ p and K- p. We work at t and s small enough for rescatterings to be neglected, and allow for the presence of a hard pomeron. After building and discussing an exhaustive dataset, we show that simple poles provide an excellent description of the data in the region - 0.5 GeV^2 < t < -0.1 GeV^2, 6 GeV<sqrt(s)< 63 GeV. We show that new form factors have to be used, and get information on the trajectories of the soft and hard pomerons.Comment: 27 pages, 9 figures, LaTeX. A few typos fixed, and references correcte

    On the rise of proton-proton cross-sections at high energies

    Full text link
    The rise of the total, elastic and inelastic hadronic cross sections at high energies is investigated by means of an analytical parametrization, with the exponent of the leading logarithm contribution as a free fit parameter. Using derivative dispersion relations with one subtraction, two different fits to proton-proton and antiproton-proton total cross section and rho parameter data are developed, reproducing well the experimental information in the energy region 5 GeV - 7 TeV. The parametrization for the total cross sections is then extended to fit the elastic (integrated) cross section data in the same energy region, with satisfactory results. From these empirical results we extract the energy dependence of several physical quantities: inelastic cross section, ratios elastic/total, inelastic/total cross sections, ratio total-cross-section/elastic-slope, elastic slope and optical point. All data, fitted and predicted, are quite well described. We find a statistically consistent solution indicating: (1) an increase of the hadronic cross sections with the energy faster than the log-squared bound by Froissart and Martin; (2) asymptotic limits 1/3 and 2/3 for the ratios elastic/total and inelastic/total cross sections, respectively, a result in agreement with unitarity. These indications corroborate recent theoretical arguments by Ya. I. Azimov on the rise of the total cross section.Comment: 35 pages, 12 figures, discussions improved with further clarifications, references added and updated, one note added, results and conclusions unchanged. Version to be published in J. Phys. G: Nucl. Part. Phy
    corecore