2,774 research outputs found
Strong exciton-photon coupling with colloidal nanoplatelets in an open microcavity
Colloidal semiconductor nanoplatelets exhibit quantum size effects due to
their thickness of only few monolayers, together with strong optical band-edge
transitions facilitated by large lateral extensions. In this article we
demonstrate room temperature strong coupling of the light and heavy hole
exciton transitions of CdSe nanoplatelets with the photonic modes of an open
planar microcavity. Vacuum Rabi splittings of meV and meV
are observed for the heavy and light hole excitons respectively, together with
a polariton-mediated hybridisation of both transitions. By measuring the
concentration of platelets in the film we compute the transition dipole moment
of a nanoplatelet exciton to be D. The large oscillator
strength and fluorescence quantum yield of semiconductor nanoplatelets provide
a perspective towards novel photonic devices, combining polaritonic and
spinoptronic effects.Comment: 9 pages, 4 figure
Affine Subspace Representation for Feature Description
This paper proposes a novel Affine Subspace Representation (ASR) descriptor
to deal with affine distortions induced by viewpoint changes. Unlike the
traditional local descriptors such as SIFT, ASR inherently encodes local
information of multi-view patches, making it robust to affine distortions while
maintaining a high discriminative ability. To this end, PCA is used to
represent affine-warped patches as PCA-patch vectors for its compactness and
efficiency. Then according to the subspace assumption, which implies that the
PCA-patch vectors of various affine-warped patches of the same keypoint can be
represented by a low-dimensional linear subspace, the ASR descriptor is
obtained by using a simple subspace-to-point mapping. Such a linear subspace
representation could accurately capture the underlying information of a
keypoint (local structure) under multiple views without sacrificing its
distinctiveness. To accelerate the computation of ASR descriptor, a fast
approximate algorithm is proposed by moving the most computational part (ie,
warp patch under various affine transformations) to an offline training stage.
Experimental results show that ASR is not only better than the state-of-the-art
descriptors under various image transformations, but also performs well without
a dedicated affine invariant detector when dealing with viewpoint changes.Comment: To Appear in the 2014 European Conference on Computer Visio
Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation
Fast timing has emerged as a critical requirement for radiation detection in medical and high energy physics, motivating the search for scintillator materials with high light yield and fast time response. However, light emission rates from conventional scintillation mechanisms fundamentally limit the achievable time resolution, which is presently at least one order of magnitude slower than required for next-generation detectors. One solution to this challenge is to generate an intense prompt signal in response to ionizing radiation. In this paper, we present colloidal semiconductor nanocrystals (NCs) as promising prompt photon sources. We investigate two classes of NCs: two-dimensional CdSe nanoplatelets (NPLs) and spherical CdSe/CdS core/giant shell quantum dots (GS QDs). We demonstrate that the emission rates of these NCs under pulsed X-ray excitation are much faster than traditional mechanisms in bulk scintillators, i.e. 5d-4f transitions. CdSe NPLs have a sub-100 ps effective decay time of 77 ps and CdSe/CdS GS QDs exhibit a sub-ns value of 849 ps. Further, the respective CdSe NPL and CdSe/CdS GS QD X-ray excited photoluminescence have the emission characteristics of excitons (X) and multiexcitons (MX), with the MXs providing additional prospects for fast timing with substantially shorter lifetimes
Generic 3D Representation via Pose Estimation and Matching
Though a large body of computer vision research has investigated developing
generic semantic representations, efforts towards developing a similar
representation for 3D has been limited. In this paper, we learn a generic 3D
representation through solving a set of foundational proxy 3D tasks:
object-centric camera pose estimation and wide baseline feature matching. Our
method is based upon the premise that by providing supervision over a set of
carefully selected foundational tasks, generalization to novel tasks and
abstraction capabilities can be achieved. We empirically show that the internal
representation of a multi-task ConvNet trained to solve the above core problems
generalizes to novel 3D tasks (e.g., scene layout estimation, object pose
estimation, surface normal estimation) without the need for fine-tuning and
shows traits of abstraction abilities (e.g., cross-modality pose estimation).
In the context of the core supervised tasks, we demonstrate our representation
achieves state-of-the-art wide baseline feature matching results without
requiring apriori rectification (unlike SIFT and the majority of learned
features). We also show 6DOF camera pose estimation given a pair local image
patches. The accuracy of both supervised tasks come comparable to humans.
Finally, we contribute a large-scale dataset composed of object-centric street
view scenes along with point correspondences and camera pose information, and
conclude with a discussion on the learned representation and open research
questions.Comment: Published in ECCV16. See the project website
http://3drepresentation.stanford.edu/ and dataset website
https://github.com/amir32002/3D_Street_Vie
From Multiview Image Curves to 3D Drawings
Reconstructing 3D scenes from multiple views has made impressive strides in
recent years, chiefly by correlating isolated feature points, intensity
patterns, or curvilinear structures. In the general setting - without
controlled acquisition, abundant texture, curves and surfaces following
specific models or limiting scene complexity - most methods produce unorganized
point clouds, meshes, or voxel representations, with some exceptions producing
unorganized clouds of 3D curve fragments. Ideally, many applications require
structured representations of curves, surfaces and their spatial relationships.
This paper presents a step in this direction by formulating an approach that
combines 2D image curves into a collection of 3D curves, with topological
connectivity between them represented as a 3D graph. This results in a 3D
drawing, which is complementary to surface representations in the same sense as
a 3D scaffold complements a tent taut over it. We evaluate our results against
truth on synthetic and real datasets.Comment: Expanded ECCV 2016 version with tweaked figures and including an
overview of the supplementary material available at
multiview-3d-drawing.sourceforge.ne
Preferred growth direction by PbS nanoplatelets preserves perovskite infrared light harvesting for stable, reproducible, and efficient solar cells
Formamidinium-based perovskite solar cells (PSCs) present the maximum theoretical efficiency of the lead perovskite family. However, formamidinium perovskite exhibits significant degradation in air. The surface chemistry of PbS has been used to improve the formamidinium black phase stability. Here, the use of PbS nanoplatelets with (100) preferential crystal orientation is reported, to potentiate the repercussion on the crystal growth of perovskite grains and to improve the stability of the material and consequently of the solar cells. As a result, a vertical growth of perovskite grains, a stable current density of 23 mA cm(-2), and a stable incident photon to current efficiency in the infrared region of the spectrum for 4 months is obtained, one of the best stability achievements for planar PSCs. Moreover, a better reproducibility than the control device, by optimizing the PbS concentration in the perovskite matrix, is achieved. These outcomes validate the synergistic use of PbS nanoplatelets to improve formamidinium long-term stability and performance reproducibility, and pave the way for using metastable perovskite active phases preserving their light harvesting capability
Core/Shell CdSe/CdS bone‐shaped nanocrystals with a thick and anisotropic shell as optical emitters
Colloidal core/shell nanocrystals are key materials for optoelectronics, enabling control over essential properties via precise engineering of the shape, thickness, and crystal structure of their shell. Here, the growth protocol for CdS branched nanocrystals is applied on CdSe nanoplatelet seeds and bone-shaped heterostructures are obtained with a highly anisotropic shell. Surprisingly, the nanoplatelets withstand the high growth temperature of 350 degrees C and structures with a CdSe nanoplatelet core that is overcoated by a shell of cubic CdS are obtained, on top of which tetrahedral CdS structures with hexagonal lattice are formed. These complex core/shell nanocrystals show a band-edge emission around 657 nm with a photoluminescence quantum yield of approximate to 42% in solution, which is also retained in thin films. Interestingly, the nanocrystals manifest simultaneous red and green emission and the relatively long wavelength of the green emission indicates charge recombination at the cubic/hexagonal interface of the CdS shell. The nanocrystal films show amplified spontaneous emission, random lasing, and distributed feedback lasing when the material is deposited on suitable gratings. This work stimulates the design and fabrication of more exotic core/shell heterostructures where charge carrier delocalization, dipole moment, and other optical and electrical properties can be engineered
Angular redistribution of near-infrared emission from quantum dots in 3D photonic crystals
We study the angle-resolved spontaneous emission of near-infrared light
sources in 3D photonic crystals over a wavelength range from 1200 to 1550 nm.
To this end PbSe quantum dots are used as light sources inside titania inverse
opal photonic crystals. Strong deviations from the Lambertian emission profile
are observed. An attenuation of 60 % is observed in the angle dependent radiant
flux emitted from the samples due to photonic stop bands. At angles that
correspond to the edges of the stop band the emitted flux is increased by up to
34 %. This increase is explained by the redistribution of Bragg-diffracted
light over the available escape angles. The results are quantitatively
explained by an expanded escape-function model. This model is based on
diffusion theory and adapted to photonic crystals using band structure
calculations. Our results are the first angular redistributions and escape
functions measured at near-infrared, including telecom, wavelengths. In
addition, this is the first time for this model to be applied to describe
emission from samples that are optically thick for the excitation light and
relatively thin for the photoluminesence light.Comment: 24 pages, 8 figures (current format = single column, double spaced
- …