527 research outputs found
Phase separation in a boson-fermion mixture of Lithium atoms
We use a semiclassical three-fluid model to analyze the conditions for
spatial phase separation in a mixture of fermionic Li-6 and a (stable)
Bose-Einstein condensate of Li-7 atoms under cylindrical harmonic confinement,
both at zero and finite temperature. We show that with the parameters of the
Paris experiment [F. Schrek et al., Phys. Rev. Lett. 87 080403 (2001)] an
increase of the boson-fermion scattering length by a factor five would be
sufficient to enter the phase-separated regime. We give examples of
configurations for the density profiles in phase separation and estimate that
the transition should persist at temperatures typical of current experiments.
For higher values of the boson-fermion coupling we also find a new phase
separation between the fermions and the bosonic thermal cloud at finite
temperature.Comment: 8 pages, 4 figures, new version of Fig. 4 and typos correcte
Collisional oscillations of trapped boson-fermion mixtures approaching collapse
We study the collective modes of a confined gaseous cloud of bosons and
fermions with mutual attractive interactions at zero temperature. The cloud
consists of a Bose-Einstein condensate and a spin-polarized Fermi gas inside a
spherical harmonic trap and the coupling between the two species is varied by
increasing either the magnitude of the interspecies s-wave scattering length or
the number of bosons. The mode frequencies are obtained in the collisional
regime by solving the equations of generalized hydrodynamics and are compared
with the spectra calculated in the collisionless regime within a random-phase
approximation. We find that, as the mixture is driven towards the collapse
instability, the frequencies of the modes of fermionic origin show a blue shift
which can become very significant for large numbers of bosons. Instead the
modes of bosonic origin show a softening, which becomes most pronounced in the
very proximity of collapse. Explicit illustrations of these trends are given
for the monopolar spectra, but similar trends are found for the dipolar and
quadrupolar spectra except for the surface (n=0) modes which are essentially
unaffected by the interactions.Comment: 9 pages, 5 figures, revtex
Particle density and non-local kinetic energy density functional for two-dimensional harmonically confined Fermi vapors
We evaluate analytically some ground state properties of two-dimensional
harmonically confined Fermi vapors with isotropy and for an arbitrary number of
closed shells. We first derive a differential form of the virial theorem and an
expression for the kinetic energy density in terms of the fermion particle
density and its low-order derivatives. These results allow an explicit
differential equation to be obtained for the particle density. The equation is
third-order, linear and homogeneous. We also obtain a relation between the
turning points of kinetic energy and particle densities, and an expression of
the non-local kinetic energy density functional.Comment: 7 pages, 2 figure
Linear density response in the random phase approximation for confined Bose vapours at finite temperature
A linear response framework is set up for the evaluation of collective
excitations in a confined vapour of interacting Bose atoms at finite
temperature. Focusing on the currently relevant case of contact interactions
between the atoms, the theory is developed within a random phase approximation
with exchange. This approach is naturally introduced in a two-fluid description
by expressing the density response of both the condensate and the
non-condensate in terms of the response of a Hartree-Fock reference gas to the
selfconsistent Hartree-Fock potentials. Such an approximate account of
correlations (i) preserves an interplay between the condensate and the
non-condensate through off-diagonal components of the response, which instead
vanish in the Hartree-Fock-Bogolubov approximation; and (ii) yields a common
resonant structure for the four partial response functions. The theory reduces
to the temperature-dependent Hartree-Fock-Bogolubov-Popov approximation for the
fluctuations of the condensate when its coupling with the density fluctuations
of the non-condensate is neglected. Analytic results are presented which are
amenable to numerical calculations and to inclusion of damping rates.Comment: 14 pages. To appear on J. Phys. : Condens. Matte
Collective excitations of a trapped degenerate Fermi gas
We evaluate the small-amplitude excitations of a spin-polarized vapour of
Fermi atoms confined inside a harmonic trap. The dispersion law
is obtained for the vapour in the
collisional regime inside a spherical trap of frequency , with
the number of radial nodes and the orbital angular momentum. The low-energy
excitations are also treated in the case of an axially symmetric harmonic
confinement. The collisionless regime is discussed with main reference to a
Landau-Boltzmann equation for the Wigner distribution function: this equation
is solved within a variational approach allowing an account for
non-linearities. A comparative discussion of the eigenmodes of oscillation for
confined Fermi and Bose vapours is presented in an Appendix.Comment: 14 pages, no figures, accepted for publication in Eur.Phys.Jour.
- …