11,238 research outputs found
Tyrosine kinase inhibition produces specific alterations in axon guidance in the grasshopper embryo
Tyrosine kinase signaling pathways are essential for process outgrowth and guidance during nervous system development. We have examined the roles of tyrosine kinase activity in programming growth cone guidance decisions in an intact nervous system in which neurons can be individually identified. We applied the tyrosine kinase inhibitors herbimycin A and genistein to whole 40% grasshopper embryos placed in medium, or injected the inhibitors into intact grasshopper eggs. Both inhibitors caused interneuronal axons that normally would grow along the longitudinal connectives to instead leave the central nervous system (CNS) within the segmental nerve root and grow out toward the body wall muscles. In addition, herbimycin A produced pathfinding errors in which many longitudinal axons crossed the CNS midline. To study how this drug affected guidance decisions made by individual growth cones, we dye-filled the pCC interneuron, which normally extends an axon anteriorly along the ipsilateral longitudinal connective. In the presence of herbimycin A, the pCC growth cone was redirected across the anterior commissure. These phenotypes suggest that tyrosine kinase inhibition blocks a signaling mechanism that repels the growth cones of longitudinal connective neurons and prevents them from crossing the midline
Passive navigation using image irradiance tracking
Rotorcraft operating at low altitudes require navigational schemes for detecting terrain and obstacles. Due to the nature of the missions to be accomplished and available power onboard, a passive navigation scheme is desirable in this situation. The development of a passive navigation scheme using optical image sequences and vehicle motion variables from an onboard inertial navigation scheme is described. This approach combines the geometric properties of perspective projection and a feedback irradiance tracking scheme at each pixel in the image to determine the range to various objects within the field-of-view. Derivation of the numerical algorithm and simulation results are given. Due to the feedback nature of the implementation, the computational scheme is robust. Other applications of the proposed approach include navigation for autonomous planetary rovers and telerobots
Nonlinear feedback guidance law for aero-assisted orbit transfer maneuvers
Aero-assisted orbit transfer vehicles have the potential for significantly reducing the fuel requirements in certain classes of orbit transfer operations. Development of a nonlinear feedback guidance law for performing aero-assisted maneuvers that accomplish simultaneous change of all the orbital elements with least vehicle acceleration magnitude is discussed. The analysis is based on a sixth order nonlinear point-mass vehicle model with lift, bank angle, thrust and drag modulation as the control variables. The guidance law uses detailed vehicle aerodynamic and the atmosphere models in the feedback loop. Higher-order gravitational harmonics, planetary atmosphere rotation and ambient winds are included in the formulation. Due to modest computational requirements, the guidance law is implementable on-board an orbit transfer vehicle. The guidance performance is illustrated for three sets of boundary conditions
- ā¦