233 research outputs found

    Small Vessel Ischemic Disease of the Brain and Brain Metastases in Lung Cancer Patients

    Get PDF
    Brain metastases occur commonly in patients with lung cancer. Small vessel ischemic disease is frequently found when imaging the brain to detect metastases. We aimed to determine if the presence of small vessel ischemic disease (SVID) of the brain is protective against the development of brain metastases in lung cancer patients.A retrospective cohort of 523 patients with biopsy confirmed lung cancer who had received magnetic resonance imaging of the brain as part of their standard initial staging evaluation was reviewed. Information collected included demographics, comorbidities, details of the lung cancer, and the presence of SVID of the brain. A portion of the cohort had the degree of SVID graded. The primary outcome measure was the portion of study subjects with and without SVID of the brain who had evidence of brain metastases at the time of initial staging of their lung cancer.109 patients (20.8%) had evidence of brain metastases at presentation and 345 (66.0%) had evidence of SVID. 13.9% of those with SVID and 34.3% of those without SVID presented with brain metastases (p<0.0001). In a model including age, diabetes mellitus, hypertension, hyperlipidemia, and tobacco use, SVID of the brain was found to be the only protective factor against the development of brain metastases, with an OR of 0.31 (0.20, 0.48; p<0.001). The grade of SVID was higher in those without brain metastases.These findings suggest that vascular changes in the brain are protective against the development of brain metastases in lung cancer patients

    Ex Vivo Activity of Cardiac Glycosides in Acute Leukaemia

    Get PDF
    BACKGROUND: Despite years of interest in the anti-cancerous effects of cardiac glycosides (CGs), and numerous studies in vitro and in animals, it has not yet been possible to utilize this potential clinically. Reports have demonstrated promising in vitro effects on different targets as well as a possible therapeutic index/selectivity in vitro and in experimental animals. Recently, however, general inhibition of protein synthesis was suggested as the main mechanism of the anti-cancerous effects of CGs. In addition, evidence of species differences of a magnitude sufficient to explain the results of many studies called for reconsideration of earlier results. PRINCIPAL FINDINGS: In this report we identified primary B-precursor and T-ALL cells as being particularly susceptible to the cytotoxic effects of CGs. Digitoxin appeared most potent and IC(50) values for several patient samples were at concentrations that may be achieved in the clinic. Significant protein synthesis inhibition at concentrations corresponding to IC(50) was demonstrated in colorectal tumour cell lines moderately resistant to the cytotoxic effects of digoxin and digitoxin, but not in highly sensitive leukaemia cell lines. CONCLUSION: It is suggested that further investigation regarding CGs may be focused on diagnoses like T- and B-precursor ALL

    Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1Ξ±, CAIX, LDH-5, GLUT-1, MCT1 and MCT4

    Get PDF
    Contains fulltext : 96097.pdf (postprint version ) (Open Access)BACKGROUND: The cellular response of malignant tumors to hypoxia is diverse. Several important endogenous metabolic markers are upregulated under hypoxic conditions. We examined the staining patterns and co-expression of HIF-1alpha, CAIX, LDH-5, GLUT-1, MCT1 and MCT4 with the exogenous hypoxic cell marker pimonidazole and the association of marker expression with clinicopathological characteristics. METHODS: 20 biopsies of advanced head and neck carcinomas were immunohistochemically stained and analyzed. All patients were given the hypoxia marker pimonidazole intravenously 2 h prior to biopsy taking. The tumor area positive for each marker, the colocalization of the different markers and the distribution of the markers in relation to the blood vessels were assessed by semiautomatic quantitative analysis. RESULTS: MCT1 staining was present in hypoxic (pimonidazole stained) as well as non-hypoxic areas in almost equal amounts. MCT1 expression showed a significant overall correlation (r = 0.75, p < 0.001) and strong spatial relationship with CAIX. LDH-5 showed the strongest correlation with pimonidazole (r = 0.66, p = 0.002). MCT4 and GLUT-1 demonstrated a typical diffusion-limited hypoxic pattern and showed a high degree of colocalization. Both MCT4 and CAIX showed a higher expression in the primary tumor in node positive patients (p = 0.09 both). CONCLUSIONS: Colocalization and staining patterns of metabolic and hypoxia-related proteins provides valuable additional information over single protein analyses and can improve the understanding of their functions and environmental influences

    Long-term survival in patients with non-small cell lung cancer and synchronous brain metastasis treated with whole-brain radiotherapy and thoracic chemoradiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brain metastases occur in 30-50% of Non-small cell lung cancer (NSCLC) patients and confer a worse prognosis and quality of life. These patients are usually treated with Whole-brain radiotherapy (WBRT) followed by systemic therapy. Few studies have evaluated the role of chemoradiotherapy to the primary tumor after WBRT as definitive treatment in the management of these patients.</p> <p>Methods</p> <p>We reviewed the outcome of 30 patients with primary NSCLC and brain metastasis at diagnosis without evidence of other metastatic sites. Patients were treated with WBRT and after induction chemotherapy with paclitaxel and cisplatin for two cycles. In the absence of progression, concurrent chemoradiotherapy for the primary tumor with weekly paclitaxel and carboplatin was indicated, with a total effective dose of 60 Gy. If disease progression was ruled out, four chemotherapy cycles followed.</p> <p>Results</p> <p>Median Progression-free survival (PFS) and Overall survival (OS) were 8.43 Β± 1.5 and 31.8 Β± 15.8 months, respectively. PFS was 39.5% at 1 year and 24.7% at 2 years. The 1- and 2-year OS rates were 71.1 and 60.2%, respectively. Three-year OS was significantly superior for patients with N0-N1 stage disease vs. N2-N3 (60 vs. 24%, respectively; Response rate [RR], 0.03; <it>p</it>= 0.038).</p> <p>Conclusions</p> <p>Patients with NSCLC and brain metastasis might benefit from treatment with WBRT and concurrent thoracic chemoradiotherapy. The subgroup of N0-N1 patients appears to achieve the greatest benefit. The result of this study warrants a prospective trial to confirm the benefit of this treatment.</p

    A phase II study of a 5T4 oncofoetal antigen tumour-targeted superantigen (ABR-214936) therapy in patients with advanced renal cell carcinoma

    Get PDF
    In a phase II study, 43 renal cell carcinoma patients were treated with individualised doses of ABR-214936; a fusion of a Fab recognising the antigen 5T4, and Staphylococcal enterotoxin A. Drug was given intravenously on 4 consecutive days, treatment was repeated 1 month later. Treatment was associated with moderate fever and nausea, but well tolerated. Of 40 evaluable patients, 28 had disease control at 2 months, and at 4 months, one patient showed partial response (PR) and 16 patients stable disease. Median survival, with minimum follow-up of 26 months was 19.7 months with 13 patients alive to date. Stratification by the Motzer's prognostic criteria highlights prolonged survival compared to published expectation. Patients receiving higher drug exposure had greater disease control and lived almost twice as long as expected, whereas the low-exposure patients survived as expected. Sustained interleukin-2 (IL-2) production after a repeated injection appears to be a biomarker for clinical effect, as the induced-IL-2 level on the day 2 of treatment correlated with survival. The high degree of disease control and the prolonged survival suggest that this treatment can be effective. These findings will be used in the trial design for the next generation of drug, with reduced antigenicity and toxicity

    The Genomic Analysis of Lactic Acidosis and Acidosis Response in Human Cancers

    Get PDF
    The tumor microenvironment has a significant impact on tumor development. Two important determinants in this environment are hypoxia and lactic acidosis. Although lactic acidosis has long been recognized as an important factor in cancer, relatively little is known about how cells respond to lactic acidosis and how that response relates to cancer phenotypes. We develop genome-scale gene expression studies to dissect transcriptional responses of primary human mammary epithelial cells to lactic acidosis and hypoxia in vitro and to explore how they are linked to clinical tumor phenotypes in vivo. The resulting experimental signatures of responses to lactic acidosis and hypoxia are evaluated in a heterogeneous set of breast cancer datasets. A strong lactic acidosis response signature identifies a subgroup of low-risk breast cancer patients having distinct metabolic profiles suggestive of a preference for aerobic respiration. The association of lactic acidosis response with good survival outcomes may relate to the role of lactic acidosis in directing energy generation toward aerobic respiration and utilization of other energy sources via inhibition of glycolysis. This β€œinhibition of glycolysis” phenotype in tumors is likely caused by the repression of glycolysis gene expression and Akt inhibition. Our study presents a genomic evaluation of the prognostic information of a lactic acidosis response independent of the hypoxic response. Our results identify causal roles of lactic acidosis in metabolic reprogramming, and the direct functional consequence of lactic acidosis pathway activity on cellular responses and tumor development. The study also demonstrates the utility of genomic analysis that maps expression-based findings from in vitro experiments to human samples to assess links to in vivo clinical phenotypes

    A Dialogue between the Hypoxia-Inducible Factor and the Tumor Microenvironment

    Get PDF
    The hypoxia-inducible factor is the key protein responsible for the cellular adaptation to low oxygen tension. This transcription factor becomes activated as a result of a drop in the partial pressure of oxygen, to hypoxic levels below 5% oxygen, and targets a panel of genes involved in maintenance of oxygen homeostasis. Hypoxia is a common characteristic of the microenvironment of solid tumors and, through activation of the hypoxia-inducible factor, is at the center of the growth dynamics of tumor cells. Not only does the microenvironment impact on the hypoxia-inducible factor but this factor impacts on microenvironmental features, such as pH, nutrient availability, metabolism and the extracellular matrix. In this review we discuss the influence the tumor environment has on the hypoxia-inducible factor and outline the role of this factor as a modulator of the microenvironment and as a powerful actor in tumor remodeling. From a fundamental research point of view the hypoxia-inducible factor is at the center of a signaling pathway that must be deciphered to fully understand the dynamics of the tumor microenvironment. From a translational and pharmacological research point of view the hypoxia-inducible factor and its induced downstream gene products may provide information on patient prognosis and offer promising targets that open perspectives for novel β€œanti-microenvironment” directed therapies
    • …
    corecore