20 research outputs found

    Fabrication of Durable Ordered Ta2O5 Nanotube Arrays Decorated with Bi2S3 Quantum Dots

    No full text
    One of the most important challenges in the fabrication of ordered tantalum pentaoxide (Ta2O5) nanotube arrays (NTs) via the electrochemical method is the formation of nanotubes that adhere well to the Ta substrate. In this paper, we propose a new protocol that allows tight-fitting Ta2O5 nanotubes to be obtained through the anodic oxidation of tantalum foil. Moreover, to enhance their activity in the photocatalytic reaction, in this study, they have been decorated by nontoxic bismuth sulfide (Bi2S3) quantum dots (QDs) via a simple successive ionic layer adsorption and reaction (SILAR) method. Transmission electron microscopy (TEM) analysis revealed that quantum dots with a size in the range of 6–11 nm were located both inside and on the external surfaces of the Ta2O5 NTs. The effect of the anodization time and annealing conditions, as well as the effect of cycle numbers in the SILAR method, on the surface properties and photoactivity of Ta2O5 nanotubes and Bi2S3/Ta2O5 composites have been investigated. The Ta2O5 nanotubes decorated with Bi2S3 QDs exhibit high photocatalytic activity in the toluene degradation reaction, i.e., 99% of toluene (C0 = 200 ppm) was degraded after 5 min of UV-Vis irradiation. Therefore, the proposed anodic oxidation of tantalum (Ta) foil followed by SILAR decorating allows a photocatalytic surface, ready to use for pollutant degradation in the gas phase, to be obtained

    Growth, Structure, and Photocatalytic Properties of Hierarchical V2O5–TiO2 Nanotube Arrays Obtained from the One-step Anodic Oxidation of Ti–V Alloys

    No full text
    V2O5-TiO2 mixed oxide nanotube (NT) layers were successfully prepared via the one-step anodization of Ti-V alloys. The obtained samples were characterized by scanning electron microscopy (SEM), UV-Vis absorption, photoluminescence spectroscopy, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (DRX), and micro-Raman spectroscopy. The effect of the applied voltage (30–50 V), vanadium content (5–15 wt %) in the alloy, and water content (2–10 vol %) in an ethylene glycol-based electrolyte was studied systematically to determine their influence on the morphology, and for the first-time, on the photocatalytic properties of these nanomaterials. The morphology of the samples varied from sponge-like to highly-organized nanotubular structures. The vanadium content in the alloy was found to have the highest influence on the morphology and the sample with the lowest vanadium content (5 wt %) exhibited the best auto-alignment and self-organization (length = 1 μm, diameter = 86 nm and wall thickness = 11 nm). Additionally, a probable growth mechanism of V2O5-TiO2 nanotubes (NTs) over the Ti-V alloys was presented. Toluene, in the gas phase, was effectively removed through photodegradation under visible light (LEDs, λmax = 465 nm) in the presence of the modified TiO2 nanostructures. The highest degradation value was 35% after 60 min of irradiation. V2O5 species were ascribed as the main structures responsible for the generation of photoactive e− and h+ under Vis light and a possible excitation mechanism was proposed
    corecore