1,155 research outputs found
Search for the Invisible Decay of Neutrons with KamLAND
The Kamioka Liquid scintillator Anti-Neutrino Detector is used in a search for single neutron or two-neutron intranuclear disappearance that would produce holes in the s-shell energy level of ^(12)C nuclei. Such holes could be created as a result of nucleon decay into invisible modes (inv), e.g., n→3ν or nn→2ν. The deexcitation of the corresponding daughter nucleus results in a sequence of space and time-correlated events observable in the liquid scintillator detector. We report on new limits for one- and two-neutron disappearance: τ(n→inv) > 5.8 × 10^(29) years and τ(nn→inv) > 1.4 × 10^(30) years at 90% C.L. These results represent an improvement of factors of ~3 and > 10^4 over previous experiments
Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion
We present results of a study of neutrino oscillation based on a 766 ton/year exposure of KamLAND to reactor antineutrinos. We observe 258 v_e candidate events with energies above 3.4 MeV compared to 365.2±23.7 events expected in the absence of neutrino oscillation. Accounting for 17.8±7.3 expected background events, the statistical significance for reactor v_e over bar (e) disappearance is 99.998%. The observed energy spectrum disagrees with the expected spectral shape in the absence of neutrino oscillation at 99.6% significance and prefers the distortion expected from v_e oscillation effects. A two-neutrino oscillation analysis of the KamLAND data gives Δm^2=7.9_(-0.5)^(+0.6)x10^(-5) eV^2. A global analysis of data from KamLAND and solar-neutrino experiments yields
Δm^2=7.9_(-0.5)^(+0.6)x10^(-5) eV^2 and tan^2θ=0.40_(-0.07)^(+0.10), the most precise determination to date
High Sensitivity Search for v_e’s from the Sun and Other Sources at KamLAND
Data corresponding to a KamLAND detector exposure of 0.28 kton yr has been used to search for ν̅ _e’s in the energy range 8.3 < E_(ν̅e) < 14.8 MeV. No candidates were found for an expected background of 1.1±0.4 events. This result can be used to obtain a limit on ν̅_e fluxes of any origin. Assuming that all ν̅_e flux has its origin in the Sun and has the characteristic ^8B solar ν_e energy spectrum, we obtain an upper limit of 3.7×10^2 cm^(-2) ^(s-1) (90% C.L.) on the ν̅_e flux. We interpret this limit, corresponding to 2.8×10^(-4) of the standard solar model ^8B ν_e flux, in the framework of spin-flavor precession and neutrino decay models
Production of radioactive isotopes through cosmic muon spallation in KamLAND
Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in ν detectors, double-β-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of ^(11)C. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be Y_n=(2.8±0.3)×10^(-4) μ^(-1) g^(-1) cm^2. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment
Aging effects in the quantum dynamics of a dissipative free particle: non-ohmic case
We report new results related to the two-time dynamics of the coordinate of a
quantum free particle, damped through its interaction with a fractal thermal
bath (non-ohmic coupling with or
. When the particle is localized, its position does not age. When
it undergoes anomalous diffusion, only its displacement may be defined. It is
shown to be an aging variable. The finite temperature aging regime is
self-similar. It is described by a scaling function of the ratio
of the waiting time to the observation time, as characterized by an exponent
directly linked to .Comment: 4 pages, 3 figures, submitted to PR
Metal-insulator transition in EuO
It is shown that the spectacular metal-insulator transition in Eu-rich EuO
can be simulated within an extended Kondo lattice model. The different orders
of magnitude of the jump in resistivity in dependence on the concentration of
oxygen vacancies as well as the low-temperature resistance minimum in
high-resistivity samples are reproduced quantitatively. The huge colossal
magnetoresistance (CMR) is calculated and discussed
Recommended from our members
To be or not to be an auctioneer: Some thoughts on the legal nature of online eBay auctions and the protection of consumers
This paper discusses the legal classification of online “eBay” auctions. The discussion has key implications on the scope of consumer protection law as sale by auctions are, for example, excluded from the scope of the Consumer Protection (Distance Selling) Regulations 2000. The paper uncovers that online “eBay” auctions cannot always be considered as traditional auctions and that eBay, as an intermediary, is not to be considered as an auctioneer. This creates difficulties associated with a distributive application of consumer protection laws such as the Consumer Protection (Distance Selling) Regulations 2000. Another set of difficulties is associated with a lenient legal regime applicable to the liability of eBay under the Electronic Commerce (EC Directive) Regulations 2002 . The paper concludes that there is an urgent need to clarify the legal classification of online auctions and to rethink the liability of online auction sites to better protect consumers
Dynamics of iron atoms across the pressure-induced Invar transition in Pd_3Fe
The ^(57)Fe phonon partial density of states (PDOS) in L1_2-ordered Pd_3Fe was studied at high pressures by nuclear resonant inelastic x-ray scattering (NRIXS) measurements and density functional theory (DFT) calculations. The NRIXS spectra showed that the stiffening of the ^(57)Fe PDOS with decreasing volume was slower from 12 to 24 GPa owing to the pressure-induced Invar transition in Pd_3Fe, with a change from a high-moment ferromagnetic (FM) state to a low-moment (LM) state observed by nuclear forward scattering. Force constants obtained from fitting to a Born–von Kármán model showed a relative softening of the first-nearest-neighbor (1NN) Fe-Pd longitudinal force constants at the magnetic transition. For the FM low-pressure state, the DFT calculations gave a PDOS and 1NN longitudinal force constants in good agreement with experiment, but discrepancies for the high-pressure LM state suggest the presence of short-range magnetic order
Electromagnetically induced transparency in cold 85Rb atoms trapped in the ground hyperfine F = 2 state
We report electromagnetically induced transparency (EIT) in cold 85Rb atoms,
trapped in the lower hyperfine level F = 2, of the ground state 5
(Tiwari V B \textit{et al} 2008 {\it Phys. Rev.} A {\bf 78} 063421). Two steady
state -type systems of hyperfine energy levels are investigated using
probe transitions into the levels F = 2 and F = 3 of the
excited state 5 in the presence of coupling transitions F = 3
F = 2 and F = 3 F = 3, respectively. The
effects of uncoupled magnetic sublevel transitions and coupling field's Rabi
frequency on the EIT signal from these systems are studied using a simple
theoretical model.Comment: 12 pages, 7 figure
- …