34,123 research outputs found

    Effects of electron transfer on the stability of hydrogen bonds.

    Get PDF
    The measurement of the dimerization constants of hydrogen-bonded ruthenium complexes (12, 22, 32) linked by a self-complementary pair of 4-pyridylcarboxylic acid ligands in different redox states is reported. Using a combination of FTIR and UV/vis/NIR spectroscopies, the dimerization constants (KD) of the isovalent, neutral states, 12, 22, 32, were found to range from 75 to 130 M-1 (ΔG0 = -2.56 to -2.88 kcal mol-1), while the dimerization constants (K2-) of the isovalent, doubly-reduced states, (12)2-, (22)2-, (32)2-, were found to range from 2000 to 2500 M-1 (ΔG0 = -4.5 to -4.63 kcal mol-1). From the aforementioned values and the comproportionation constant for the mixed-valent dimers, the dimerization constants (KMV) of the mixed-valent, hydrogen-bonded dimers, (12)-, (22)-, (32)-, were found to range from 0.5 × 106 to 1.2 × 106 M-1 (ΔG0 = -7.78 to -8.31 kcal mol-1). On average, the hydrogen-bonded, mixed-valent states are stabilized by -5.27 (0.04) kcal mol-1 relative to the isovalent, neutral, hydrogen-bonded dimers and -3.47 (0.06) kcal mol-1 relative to the isovalent, dianionic hydrogen bonded dimers. Electron exchange in the mixed valence states imparts significant stability to hydrogen bonding. This is the first quantitative measurement of the strength of hydrogen bonds in the presence and absence of electronic exchange

    Narrow scope for resolution-limit-free community detection

    Full text link
    Detecting communities in large networks has drawn much attention over the years. While modularity remains one of the more popular methods of community detection, the so-called resolution limit remains a significant drawback. To overcome this issue, it was recently suggested that instead of comparing the network to a random null model, as is done in modularity, it should be compared to a constant factor. However, it is unclear what is meant exactly by "resolution-limit-free", that is, not suffering from the resolution limit. Furthermore, the question remains what other methods could be classified as resolution-limit-free. In this paper we suggest a rigorous definition and derive some basic properties of resolution-limit-free methods. More importantly, we are able to prove exactly which class of community detection methods are resolution-limit-free. Furthermore, we analyze which methods are not resolution-limit-free, suggesting there is only a limited scope for resolution-limit-free community detection methods. Finally, we provide such a natural formulation, and show it performs superbly

    Severity of disease and risk of malignant change in hereditary multiple exostoses. A genotype-phenotype study

    Get PDF
    We performed a prospective genotype-phenotype study using molecular screening and clinical assessment to compare the severity of disease and the risk of sarcoma in 172 individuals (78 families) with hereditary multiple exostoses. We calculated the severity of disease including stature, number of exostoses, number of surgical procedures that were necessary, deformity and functional parameters and used molecular techniques to identify the genetic mutations in affected individuals. Each arm of the genotype-phenotype study was blind to the outcome of the other. Mutations EXT1 and EXT2 were almost equally common, and were identified in 83% of individuals. Non-parametric statistical tests were used. There was a wide variation in the severity of disease. Children under ten years of age had fewer exostoses, consistent with the known age-related penetrance of this condition. The severity of the disease did not differ significantly with gender and was very variable within any given family. The sites of mutation affected the severity of disease with patients with EXT1 mutations having a significantly worse condition than those with EXT2 mutations in three of five parameters of severity (stature, deformity and functional parameters). A single sarcoma developed in an EXT2 mutation carrier, compared with seven in EXT1 mutation carriers. There was no evidence that sarcomas arose more commonly in families in whom the disease was more severe. The sarcoma risk in EXT1 carriers is similar to the risk of breast cancer in an older population subjected to breast-screening, suggesting that a role for regular screening in patients with hereditary multiple exostoses is justifiable. ©2004 British Editorial Society of Bone and Joint Surgery

    Improved He I Emissivities in the Case B Approximation

    Get PDF
    We update our prior work on the case B collisional-recombination spectrum of He I to incorporate \textit{ab initio} photoionisation cross-sections. This large set of accurate, self-consistent cross-sections represents a significant improvement in He I emissivity calculations because it largely obviates the piecemeal nature that has marked all modern works. A second, more recent set of \textit{ab initio} cross-sections is also available, but we show that those are less consistent with bound-bound transition probabilities than our adopted set. We compare our new effective recombination coefficients with our prior work and our new emissivities with those by other researchers, and we conclude with brief remarks on the effects of the present work on the He I error budget. Our calculations cover temperatures 5000Te250005000 \le T_e \le 25000 K and densities 101ne101410^1 \le n_e \le 10^{14} cm3^{-3}. Full results are available online.Comment: Accepted to MNRAS Letters; 4 pages, 4 figures, 2 tables, 1 supplemental fil

    Broken symmetries and pattern formation in two-frequency forced Faraday waves

    Full text link
    We exploit the presence of approximate (broken) symmetries to obtain general scaling laws governing the process of pattern formation in weakly damped Faraday waves. Specifically, we consider a two-frequency forcing function and trace the effects of time translation, time reversal and Hamiltonian structure for three illustrative examples: hexagons, two-mode superlattices, and two-mode rhomboids. By means of explicit parameter symmetries, we show how the size of various three-wave resonant interactions depends on the frequency ratio m:n and on the relative temporal phase of the two driving terms. These symmetry-based predictions are verified for numerically calculated coefficients, and help explain the results of recent experiments.Comment: 4 pages, 6 figure

    Hadronic Gamma Rays from Supernova Remnants

    Get PDF
    A gas cloud near a supernova remnant (SNR) provides a target for pp-collisions leading to subsequent gamma-ray emission through neutral pion decay. The assumption of a power-law ambient spectrum of accelerated particles with index near -2 is usually built into models predicting the spectra of very-high energy (VHE) gamma-ray emission from SNRs. However, if the gas cloud is located at some distance from the SNR shock, this assumption is not necessarily correct. In this case, the particles which interact with the cloud are those leaking from the shock and their spectrum is approximately monoenergetic with the injection energy gradually decreasing as the SNR ages. In the GLAST energy range the gamma-ray spectrum resulting from particle interactions with the gas cloud will be flatter than expected, with the cutoff defined by the pion momentum distribution in the laboratory frame. We evaluate the flux of particles escaping from a SNR shock and apply the results to the VHE diffuse emission detected by the HESS at the Galactic centre.Comment: 4 pages, 3 figures. Contribution to the 30th ICRC, Merida, Mexico, 2007 (final version
    corecore