29 research outputs found

    Spin waves in diluted magnetic quantum wells

    Full text link
    We study collective spin excitations in two-dimensional diluted magnetic semiconductors, placed into external magnetic field. Two coupled modes of the spin waves (the electron and ion modes) are found to exist in the system along with a number of the ion spin excitations decoupled from the electron system. We calculate analytically the spectrum of the waves taking into account the exchange interaction of itinerant electrons both with each other and with electrons localized on the magnetic ions. The interplay of these interactions leads to a number of intriguing phenomena including tunable anticrossing of the modes and a field-induced change in a sign of the group velocity of the ion mode

    Formalism for obtaining nuclear momentum distributions by the Deep Inelastic Neutron Scattering technique

    Full text link
    We present a new formalism to obtain momentum distributions in condensed matter from Neutron Compton Profiles measured by the Deep Inelastic Neutron Scattering technique. The formalism describes exactly the Neutron Compton Profiles as an integral in the momentum variable yy. As a result we obtain a Volterra equation of the first kind that relates the experimentally measured magnitude with the momentum distributions of the nuclei in the sample. The integration kernel is related with the incident neutron spectrum, the total cross section of the filter analyzer and the detectors efficiency function. A comparison of the present formalism with the customarily employed approximation based on a convolution of the momentum distribution with a resolution function is presented. We describe the inaccuracies that the use of this approximation produces, and propose a new data treatment procedure based on the present formalism.Comment: 11 pages, 8 figure

    Collective modes of the massless Dirac plasma

    Full text link
    We develop a theory for the long-wavelength plasma oscillation of a collection of charged massless Dirac particles in a solid, as occurring for example in doped graphene layers, interacting via the long-range Coulomb interaction. We find that the long-wavelength plasmon frequency in such a doped massless Dirac plasma is explicitly non-classical in all dimensions with the plasma frequency being proportional to \hbar^{-1/2}. We also show that the long wavelength plasma frequency of the D-dimensional superlattice made from such a plasma does not agree with the corresponding (D + 1)-dimensional bulk plasmon frequency. We compare and contrast such Dirac plasmons with the well-studied regular palsmons in metals and doped semiconductors which manifest the usual classical long wavelength plasma oscillation.Comment: 5 page

    Raman scattering through a metal-insulator transition

    Full text link
    The exact solution for nonresonant A1g and B1g Raman scattering is presented for the simplest model that has a correlated metal-insulator transition--the Falicov-Kimball model, by employing dynamical mean field theory. In the general case, the A1g response includes nonresonant, resonant, and mixed contributions, the B1g response includes nonresonant and resonant contributions (we prove the Shastry-Shraiman relation for the nonresonant B1g response) while the B2g response is purely resonant. Three main features are seen in the nonresonant B1g channel: (i) the rapid appearance of low-energy spectral weight at the expense of higher-energy weight; (b) the frequency range for this low-energy spectral weight is much larger than the onset temperature, where the response first appears; and (iii) the occurrence of an isosbestic point, which is a characteristic frequency where the Raman response is independent of temperature for low temperatures. Vertex corrections renormalize away all of these anomalous features in the nonresonant A1g channel. The calculated results compare favorably to the Raman response of a number of correlated systems on the insulating side of the quantum-critical point (ranging from Kondo insulators, to mixed-valence materials, to underdoped high-temperature superconductors). We also show why the nonresonant B1g Raman response is ``universal'' on the insulating side of the metal-insulator transition.Comment: 12 pages, 11 figures, ReVTe

    Repulsion of Single-well Fundamental Edge Magnetoplasmons in Double Quantum Wells

    Full text link
    A {\it microscopic} treatment of fundamental edge magnetoplasmons (EMPs) along the edge of a double quantum well (DQW) is presented for strong magnetic fields, low temperatures, and total filling factor \nu=2. It is valid for lateral confining potentials that Landau level (LL) flattening can be neglected. The cyclotron and Zeeman energies are assumed larger than the DQW energy splitting \sqrt{\Delta^2 +4T^2}, where \Delta is the splitting of the isolated wells and T the tunneling matrix element. %hen calculated unperturbed density profile is sharp at the edge. Using a random-phase approximation (RPA), which includes local and nonlocal contributions to the current density, it is shown that for negligible tunnel coupling 2T << \Delta the inter-well Coulomb coupling leads to two DQW fundamental EMPs which are strongly renormalized in comparison with the decoupled, single-well fundamental EMP. These DQW modes can be modified further upon varying the inter-well distance d, along the z axis, and/or the separation of the wells' edges \Delta y along the y axis. The charge profile of the {\it fast} and {\it slow} DQW mode varies, respectively, in an {\it acoustic} and {\it optical} manner along the y axis and is not smooth on the \ell_{0} scale. For strong tunneling \Delta\alt 2T these DQW modes are essentially modified when \Delta is changed by applying a transverse electric field to the DQW.Comment: Text 18 pages in Latex/Revtex/Preprint format, 2 Postscript figure

    Random-phase Approximation Treatment Of Edge Magnetoplasmons: Edge-state Screening And Nonlocality

    Full text link
    A random-phase approximation (RPA) treatment of edge magnetoplasmons (EMP) is presented for strong magnetic fields, low temperatures, and integer filling factors \nu. It is valid for negligible dissipation and lateral confining potentials smooth on the scale of the magnetic length \ell_{0} but sufficiently steep that the Landau-level (LL) flattening can be neglected. LL coupling, screening by edge states, and nonlocal contributions to the current density are taken into account. In addition to the fundamental mode with typical dispersion relation \omega\sim q_x \ln(q_{x}), fundamental modes with {\it acoustic} dispersion relation \omega\sim q_x are obtained for \nu>2. For \nu=1,2 a {\bf dipole} mode exists, with dispersion relation \omega\sim q_x^3, that is directly related to nonlocal responses.Comment: Text 12 pages in Latex/Revtex format, 4 Postscript figure

    Role of electronic excitations in magneto-Raman spectra of graphene

    No full text
    We investigate the signature of the low-energy electronic excitations in the Raman spectrum of monolayer and bilayer graphenes. The dominant contribution to the Raman spectra is due to the interband electron-hole (e-h) pairs, which belong to the irreducible representation A(2) of the point group C-6v of the graphene lattice, and are characterized by crossed polarization of incoming and outgoing photons. At high magnetic fields, this is manifested by the excitation of e-h inter-Landau-level (LL) transitions with selection rule n(-) -> n(+). Weaker Raman-active inter-LL modes also exist. One of those has a selection rule similar to the infrared absorption process, n(-) -> (n +/- 1)(+), but the created e-h excitation belongs to the irreducible representation E-2 (rather than E-1) and couples to the optical phonon mode, thus undergoing an anticrossing with the optical phonon G-line in Raman in a strong magnetic field. The fine structure acquired by the G-line due to such anticrossing depends on the carrier density, inhomogeneity of doping and presence of inhomogeneous strain in the sample

    Direct observation of tunneling in KDP using neutron Compton scattering

    No full text
    Neutron Compton Scattering measurements presented here of the momentum distribution of hydrogen in KH2PO4KH_2PO_4 (KDP) just above and well below the ferroelectric transition temperature show clearly that the proton is coherent over both sites in the in the high temperature phase, a result that invalidates the commonly accepted order-disorder picture of the transition. The Born-Oppenheimer potential for the hydrogen, extracted directly from data for the first time, is consistent with neutron diffraction data, and the vibrational spectrum is in substantial agreement with infrared absorption measurements. The measurements are sensitive enough to detect the effect of surrounding ligands on the hydrogen bond, and can be used to study the systematic effect of the variation of these ligands in other hydrogen bonded systems.Comment: 5 pages, 3 figure
    corecore