25,678 research outputs found

    Flight-measured X-24A lifting body control surface hinge moments and correlation with wind tunnel predictions

    Get PDF
    Control-surface hinge-moment measurements obtained in the X-24A lifting body flight-test program are compared with results from wind-tunnel tests. The effects of variations in angle of attack, angle of sideslip, rudder bias, rudder deflection, upper-flap deflection, lower-flap deflection, Mach number, and rocket-engine operation on the control-surface hinge moments are presented. In-flight motion pictures of tufts attached to the inboard side of the right fin and the rudder and upper-flap surfaces are discussed

    The Cluster Distribution as a Test of Dark Matter Models. IV: Topology and Geometry

    Full text link
    We study the geometry and topology of the large-scale structure traced by galaxy clusters in numerical simulations of a box of side 320 h−1h^{-1} Mpc, and compare them with available data on real clusters. The simulations we use are generated by the Zel'dovich approximation, using the same methods as we have used in the first three papers in this series. We consider the following models to see if there are measurable differences in the topology and geometry of the superclustering they produce: (i) the standard CDM model (SCDM); (ii) a CDM model with Ω0=0.2\Omega_0=0.2 (OCDM); (iii) a CDM model with a `tilted' power spectrum having n=0.7n=0.7 (TCDM); (iv) a CDM model with a very low Hubble constant, h=0.3h=0.3 (LOWH); (v) a model with mixed CDM and HDM (CHDM); (vi) a flat low-density CDM model with Ω0=0.2\Omega_0=0.2 and a non-zero cosmological Λ\Lambda term (Λ\LambdaCDM). We analyse these models using a variety of statistical tests based on the analysis of: (i) the Euler-Poincar\'{e} characteristic; (ii) percolation properties; (iii) the Minimal Spanning Tree construction. Taking all these tests together we find that the best fitting model is Λ\LambdaCDM and, indeed, the others do not appear to be consistent with the data. Our results demonstrate that despite their biased and extremely sparse sampling of the cosmological density field, it is possible to use clusters to probe subtle statistical diagnostics of models which go far beyond the low-order correlation functions usually applied to study superclustering.Comment: 17 pages, 7 postscript figures, uses mn.sty, MNRAS in pres

    Supersonic Flow of Chemically Reacting Gas-Particle Mixtures. Volume 2: RAMP - A Computer Code for Analysis of Chemically Reacting Gas-Particle Flows

    Get PDF
    A computer program written in conjunction with the numerical solution of the flow of chemically reacting gas-particle mixtures was documented. The solution to the set of governing equations was obtained by utilizing the method of characteristics. The equations cast in characteristic form were shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The characteristic directions for the gas-particle system are found to be the conventional gas Mach lines, the gas streamlines and the particle streamlines. The basic mesh construction for the flow solution is along streamlines and normals to the streamlines for axisymmetric or two-dimensional flow. The analysis gives detailed information of the supersonic flow and provides for a continuous solution of the nozzle and exhaust plume flow fields. Boundary conditions for the flow solution are either the nozzle wall or the exhaust plume boundary

    Supersonic flow of chemically reacting gas-particle mixtures. Volume 1: A theoretical analysis and development of the numerical solution

    Get PDF
    A numerical solution for chemically reacting supersonic gas-particle flows in rocket nozzles and exhaust plumes was described. The gas-particle flow solution is fully coupled in that the effects of particle drag and heat transfer between the gas and particle phases are treated. Gas and particles exchange momentum via the drag exerted on the gas by the particles. Energy is exchanged between the phases via heat transfer (convection and/or radiation). Thermochemistry calculations (chemical equilibrium, frozen or chemical kinetics) were shown to be uncoupled from the flow solution and, as such, can be solved separately. The solution to the set of governing equations is obtained by utilizing the method of characteristics. The equations cast in characteristic form are shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The particle distribution is represented in the numerical solution by a finite distribution of particle sizes

    Control of Raman Lasing in the Nonimpulsive Regime

    Full text link
    We explore coherent control of stimulated Raman scattering in the nonimpulsive regime. Optical pulse shaping of the coherent pump field leads to control over the stimulated Raman output. A model of the control mechanism is investigated.Comment: 4 pages, 5 figure

    Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. III: Role of particle-number projection

    Full text link
    Starting from HFB-6, we have constructed a new mass table, referred to as HFB-8, including all the 9200 nuclei lying between the two drip lines over the range of Z and N > 6 and Z < 122. It differs from HFB-6 in that the wave function is projected on the exact particle number. Like HFB-6, the isoscalar effective mass is constrained to the value 0.80 M and the pairing is density independent. The rms errors of the mass-data fit is 0.635 MeV, i.e. better than almost all our previous HFB mass formulas. The extrapolations of this new mass formula out to the drip lines do not differ significantly from the previous HFB-6 mass formula.Comment: 9 pages, 7 figures, accepted for publication in Phys. Rev.

    Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. II: Role of the effective mass

    Full text link
    We have constructed four new complete mass tables, referred to as HFB-4 to HFB-7, each one including all the 9200 nuclei lying between the two drip lines over the range of Z and N>8 and Z<120. HFB-4 and HFB-5 have the isoscalar effective mass M*_s$ constrained to the value 0.92 M, with the former having a density-independent pairing, and the latter a density-dependent pairing. HFB-6 and HFB-7 are similar, except that M*_s is constrained to 0.8 M. The rms errors of the mass-data fits are 0.680, 0.675, 0.686, and 0.676 MeV, respectively, almost as good as for the HFB-2 mass formula, for which M*_s was unconstrained. However, as usual, the single-particle spectra depend significantly on M*_s. This decoupling of the mass fits from the fits to the single-particle spectra has been achieved only by making the cutoff parameter of the delta-function pairing force a free parameter. An improved treatment of the center-of-mass correction was adopted, but although this makes a difference to individual nuclei it does not reduce the overall rms error of the fit. The extrapolations of all four new mass formulas out to the drip lines are essentially the same as for the original HFB-2 mass formula.Comment: 12 pages revtex, 9 eps figures, accepted for publication in Phys. Rev.
    • …
    corecore