227 research outputs found

    Calibrating Type Ia Supernovae using the Planetary Nebula Luminosity Function I. Initial Results

    Get PDF
    We report the results of an [O III] lambda 5007 survey for planetary nebulae (PN) in five galaxies that were hosts of well-observed Type Ia supernovae: NGC 524, NGC 1316, NGC 1380, NGC 1448 and NGC 4526. The goals of this survey are to better quantify the zero-point of the maximum magnitude versus decline rate relation for supernovae Type Ia and to validate the insensitivity of Type Ia luminosity to parent stellar population using the host galaxy Hubble type as a surrogate. We detected a total of 45 planetary nebulae candidates in NGC 1316, 44 candidates in NGC 1380, and 94 candidates in NGC 4526. From these data, and the empirical planetary nebula luminosity function (PNLF), we derive distances of 17.9 +0.8/-0.9 Mpc, 16.1 +0.8/-1.1 Mpc, and 13.6 +1.3/-1.2 Mpc respectively. Our derived distance to NGC 4526 has a lower precision due to the likely presence of Virgo intracluster planetary nebulae in the foreground of this galaxy. In NGC 524 and NGC 1448 we detected no planetary nebulae candidates down to the limiting magnitudes of our observations. We present a formalism for setting realistic distance limits in these two cases, and derive robust lower limits of 20.9 Mpc and 15.8 Mpc, respectively. After combining these results with other distances from the PNLF, Cepheid, and Surface Brightness Fluctuations distance indicators, we calibrate the optical and near-infrared relations for supernovae Type Ia and we find that the Hubble constants derived from each of the three methods are broadly consistent, implying that the properties of supernovae Type Ia do not vary drastically as a function of stellar population. We determine a preliminary Hubble constant of H_0 = 77 +/- 3 (random) +/- 5 (systematic) km/s/Mpc for the PNLF, though more nearby galaxies with high-quality observations are clearly needed.Comment: 25 pages, 12 figures. Accepted for publication by the Astrophysical Journal. Figures degraded to comply with limit. Full paper is available at: http://www.as.ysu.edu/~jjfeldme/pnlf_Ia.pd

    NGC 770: A Counter-Rotating Core in a Low-Luminosity Elliptical Galaxy

    Full text link
    We present evidence for a counter-rotating core in the low-luminosity (M_B = -18.2) elliptical galaxy NGC 770 based on internal stellar kinematic data. This counter-rotating core is unusual as NGC 770 is not the primary galaxy in the region and it lies in an environment with evidence of on-going tidal interactions. We discovered the counter-rotating core via single-slit Keck/ESI echelle spectroscopy; subsequent integral field spectroscopy was obtained with the Gemini/GMOS IFU. The counter-rotating region has a peak rotation velocity of 21 km/s as compared to the main galaxy's rotation speed of greater than 45 km/s in the opposite direction. The counter-rotating region extends to a radius of 4'' (0.6 kpc), slightly smaller than the half-light radius of the galaxy which is 5.3'' (0.8 kpc) and is confined to a disk whose scale height is less than 0.8'' (0.1 kpc). We compute an age and metallicity of the inner counter-rotating region of 3 +/- 0.5 Gyr and [Fe/H] = 0.2 +/- 0.2 dex, based on Lick absorption-line indices. The lack of other large galaxies in this region limits possible scenarios for the formation of the counter-rotating core. We discuss several scenarios and favor one in which NGC 770 accreted a small gas-rich dwarf galaxy during a very minor merging event. If this scenario is correct, it represents one of the few known examples of merging between two dwarf-sized galaxies.Comment: 26 pages, 9 figures. Accepted to AJ. See this http://www.ociw.edu/~mgeha/geha.ps.gz for version with high resolution figure

    Internal Dynamics, Structure and Formation of Dwarf Elliptical Galaxies: II. Rotating Versus Non-Rotating Dwarfs

    Full text link
    We present spatially-resolved internal kinematics and stellar chemical abundances for a sample of dwarf elliptical (dE) galaxies in the Virgo Cluster observed with Keck/ESI. We find that 4 out of 17 dEs have major axis rotation velocities consistent with rotational flattening, while the remaining dEs have no detectable major axis rotation. Despite this difference in internal kinematics, rotating and non-rotating dEs are remarkably similar in terms of their position in the Fundamental Plane, morphological structure, stellar populations, and local environment. We present evidence for faint underlying disks and/or weak substructure in a fraction of both rotating and non-rotating dEs, but a comparable number of counter-examples exist for both types which show no evidence of such structure. Absorption-line strengths were determined based on the Lick/IDS system (Hbeta, Mgb, Fe5270, Fe5335) for the central region of each galaxy. We find no difference in the line-strength indices, and hence stellar populations, between rotating and non-rotating dE galaxies. The best-fitting mean age and metallicity for our 17 dE sample are 5 Gyr and Fe/H = -0.3 dex, respectively, with rms spreads of 3 Gyr and 0.1 dex. The majority of dEs are consistent with solar alpha/Fe abundance ratios. By contrast, the stellar populations of classical elliptical galaxies are, on average, older, more metal rich, and alpha-enhanced relative to our dE sample. The local environments of both dEs types appear to be diverse in terms of their proximity to larger galaxies in real or velocity space within the Virgo Cluster. Thus, rotating and non-rotating dEs are remarkably similar in terms of their structure, stellar content, and local environments, presenting a significant challenge to theoretical models of their formation. (abridged)Comment: 33 pages, 12 figures. To appear in the October 2003 Astronomical Journal. See http://www.ucolick.org/~mgeha/geha_dE.ps.gz for version with high resolution figure

    Extented ionized gas emission and kinematics of the compact group galaxies in HCG 16: Signatures of mergers

    Get PDF
    We report on kinematic observations of Ha emission line from four late-type galaxies of Hickson Compact Group 16 (H16a,b,c and d) obtained with a scanning Fabry-Perot interferometer and samplings of 16 km/s and 1". The velocity fields show kinematic peculiarities for three of the four galaxies: H16b, c and d. Misalignments between the kinematic and photometric axes of gas and stellar components (H16b,c,d), double gas systems (H16c) and severe warping of the kinematic major axis (H16b and c) were some of the peculiarities detected. We conclude that major merger events have taken place in at least two of the galaxies group. H16c and d, based on their significant kinematic peculiarities, their double nuclei and high infrared luminosities. Their Ha gas content is strongly spatially concentred - H16d contains a peculiar bar-like structure confined to the inner \sim 1 h^-1 kpc region. These observations are in agreement with predictions of simulations, namely that the gas flows towards the galaxy nucleus during mergers, forms bars and fuel the central activity. Galaxy H16b, and Sb galaxy, also presents some of the kinematic evidences for past accretion events. Its gas content, however, is very spare, limiting our ability to find other kinematic merging indicators, if they are present. We find that isolated mergers, i.e., they show an anormorphous morphology and no signs of tidal tails. Tidal arms and tails formed during the mergers may have been stripped by the group potential (Barnes & Hernquist 1992) ar alternatively they may have never been formed. Our observations suggest that HCG 16 may be a young compact group in formation throught the merging of close-by objects in a dense environment.Comment: Accepted for publication in ApJ. 35 pages, 13 figures. tar file gzipped and uuencode

    Dynamical Models of Elliptical Galaxies in z=0.5 Clusters: I. Data-Model Comparison and Evolution of Galaxy Rotation

    Get PDF
    We present spatially resolved stellar rotation velocity and velocity dispersion profiles form Keck/LRIS absorption-line spectra for 25 galaxies, mostly visually classified ellipticals, in three clusters at z=0.5. We interpret the kinematical data and HST photometry using oblate axisymmetric two-integral f(E,Lz) dynamical models based on the Jeans equations. This yields good fits, provided that the seeing and observational characteristics are carefully modeled. The fits yield for each galaxy the dynamical M/L and a measure of the galaxy rotation rate. Paper II addresses the implied M/L evolution. Here we study the rotation-rate evolution by comparison to a sample of local elliptical galaxies of similar present-day luminosity. The brightest galaxies in the sample all rotate too slowly to account for their flattening, as is also observed at z=0. But the average rotation rate is higher at z=0.5 than locally. This may be due to a higher fraction of misclassified S0 galaxies (although this effect is insufficient to explain the observed strong evolution of the cluster S0 fraction with redshift). Alternatively, dry mergers between early-type galaxies may have decreased the average rotation rate over time. It is unclear whether such mergers are numerous enough in clusters to explain the observed trend quantitatively. Disk-disk mergers may affect the comparison through the so-called progenitor bias, but this cannot explain the direction of the observed rotation-rate evolution. Additional samples are needed to constrain possible environmental dependencies and cosmic variance in galaxy rotation rates. Either way, studies of the internal stellar dynamics of distant galaxies provide a valuable new approach for exploring galaxy evolution.Comment: ApJ, submitted; 17 pages formatted with emulateap

    The Nuclear Ionized Gas in the Radio Galaxy M84 (NGC 4374)

    Full text link
    We present optical images of the nucleus of the nearby radio galaxy M84 (NGC 4374 = 3C272.1) obtained with the Wide Field/Planetary Camera 2 (WFPC2) aboard the Hubble Space Telescope (HST). Our three images cover the Hα\alpha + [N II] emission lines as well as the V and I continuum bands. Analysis of these images confirms that the Hα\alpha + [N II] emission in the central 5'' (410 pc) is elongated along position angle (P.A.) \approx 72\arcdeg, which is roughly parallel to two nuclear dust lanes.Our high-resolution images reveal that the Hα\alpha + [N II] emission has three components, namely a nuclear gas disk,an `ionization cone', and outer filaments. The nuclear disk of ionized gas has diameter 1=82\approx 1'' = 82 pc and major axis P.A. \approx 58\arcdeg \pm 6\arcdeg. On an angular scale of 0\farcs5, the major axis of this nuclear gas disk is consistent with that of the dust. However, the minor axis of the gas disk (P.A. \approx 148\arcdeg) is tilted with respect to that of the filamentary Hα\alpha + [N II] emission at distances > 2'' from the nucleus; the minor axis of this larger scale gas is roughly aligned with the axis of the kpc-scale radio jets (P.A. \approx 170\arcdeg). The ionization cone (whose apex is offset by \approx 0\farcs3 south of the nucleus) extends 2'' from the nucleus along the axis of the southern radio jet. This feature is similar to the ionization cones seen in some Seyfert nuclei, which are also aligned with the radio axes.Comment: 11 pages plus 4 figure

    Detection of Radial Surface Brightness Fluctuation and Color Gradients in elliptical galaxies with ACS

    Get PDF
    We study surface brightness fluctuations (SBF) in a sample of 8 elliptical galaxies using Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) data drawn from the Hubble Space Telescope (HST) archive. SBF magnitudes in the F814W bandpass, and galaxy colors from F814W, F435W, and F606W images -- when available -- are presented. Galaxy surface brightness profiles are determined as well. We present the first SBF--broadband color calibration for the ACS/WFC F814W bandpass, and (relative) distance moduli estimates for 7 of our galaxies. We detect and study in detail the SBF variations within individual galaxies as a probe of possible changes in the underlying stellar populations. Inspecting both the SBF and color gradients in comparison to model predictions, we argue that SBF, and SBF-gradients, can in principle be used for unraveling the different evolutionary paths taken by galaxies, though a more comprehensive study of this issue would be required. We confirm that the radial variation of galaxy stellar population properties should be mainly connected to the presence of radial chemical abundance gradients, with the outer galaxy regions being more metal poor than the inner ones.Comment: 47 pages, 13 figures, ApJ, accepte

    Star formation and figure rotation in the early-type galaxy NGC2974

    Get PDF
    We present Galaxy Evolution Explorer (GALEX) far (FUV) and near (NUV) ultraviolet imaging of the nearby early-type galaxy NGC2974, along with complementary ground-based optical imaging. In the ultraviolet, the galaxy reveals a central spheroid-like component and a newly discovered complete outer ring of radius 6.2kpc, with suggestions of another partial ring at an even larger radius. Blue FUV-NUV and UV-optical colours are observed in the centre of the galaxy and from the outer ring outward, suggesting young stellar populations (< 1Gyr) and recent star formation in both locations. This is supported by a simple stellar population model which assumes two bursts of star formation, allowing us to constrain the age, mass fraction and surface mass density of the young component pixel by pixel. Overall, the mass fraction of the young component appears to be just under 1per cent (lower limit, uncorrected for dust extinction). The additional presence of a nuclear and an inner ring (radii 1.4 and 2.9kpc, respectively), as traced by [OIII] emission, suggests ring formation through resonances. All three rings are consistent with a single pattern speed of 78±678\pm6 km/s/kpc, typical of S0 galaxies and only marginally slower than expected for a fast bar if traced by a small observed surface brightness plateau. This thus suggests that star formation and morphological evolution in NGC2974 at the present epoch are primarily driven by a rotating asymmetry (probably a large-scale bar), despite the standard classification of NGC2974 as an E4 elliptical.Comment: 13 pages, 10 figures, Changed content, Accepted for publication in MNRA

    Discovery of a Boxy Peanut Shaped Bulge in the Near Infrared

    Get PDF
    We report on the discovery of a boxy/peanut shaped bulge in the highly inclined barred Seyfert 2 galaxy NGC~7582. The peanut shape is clearly evident in near infrared JHKJHK images but obscured by extinction from dust in visible BVRBVR images. This suggests that near infrared imaging surveys will discover a larger number of boxy/peanut morphologies than visible surveys, particularly in galaxies with heavy extinction such as NGC~7582. The bulge in NGC~7582 exhibits strong boxiness compared to other boxy/peanut shaped bulges. If the starburst was mediated by the bar, then it is likely that the bar formed in less than a few bar rotation periods or a few ×108\times 10^8 years ago. If the bar also caused the peanut, then the peanut would have formed quickly; on a timescale of a few bar rotation periods.Comment: AAS Latex and Postcript Figures, accepted for publication in Ap

    A Merger Scenario for the Dynamics of Abell 665

    Get PDF
    We present new redshift measurements for 55 galaxies in the vicinity of the rich galaxy cluster Abell 665. When combined with results from the literature, we have good velocity measurements for a sample of 77 confirmed cluster members from which we derive the cluster's redshift z=0.1829 +/- 0.0005 and line-of-sight velocity dispersion of 1390 +/- 120 km/s. Our analysis of the kinematical and spatial data for the subset of galaxies located within the central 750 kpc reveals only subtle evidence for substructure and non-Gaussianity in the velocity distribution. We find that the brightest cluster member is not moving significantly relative to the other galaxies near the center of the cluster. On the other hand, our deep ROSAT high resolution image of A665 shows strong evidence for isophotal twisting and centroid variation, thereby confirming previous suggestions of significant substructure in the hot X-ray--emitting intracluster gas. In light of this evident substructure, we have compared the optical velocity data with N-body simulations of head-on cluster mergers. We find that a merger of two similar mass subclusters (mass ratios of 1:1 or 1:2) seen close to the time of core-crossing produces velocity distributions that are consistent with that observed.Comment: 30 pages and 7 figures. Accepted by the Astrophysical Journal Full resoultion figures 1 and 3 available in postscript at http://www.physics.rutgers.edu/~percy/A665paper.htm
    corecore