634 research outputs found

    Experimental search for anisotropic flux flow resistivity in the a-b plane of optimally doped epitaxial thin films of YBCO

    Full text link
    Transport measurements along the node and anti-node directions in the a-b plane of optimally doped and epitaxial thin films of YBCO are reported. Low bias magnetoresistance measurements near and below T_c show that the flux flow resistivity along the node and anti-node directions versus magnetic field are indistinguishable. This result suggests that within the experimental error of our measurements, no correspondence is found between the flux pinning properties in YBCO and the d-wave nature of the order parameter.Comment: 5 figure

    Triplet supercurrent in ferromagnetic Josephson junctions by spin injection

    Full text link
    We show that injecting nonequilibrium spins into the superconducting leads strongly enhances the stationary Josephson current through a superconductor-ferromagnet-superconductor junction. The resulting long-range super-current through a ferromagnet is carried by triplet Cooper pairs that are formed in s-wave superconductors by the combined effects of spin injection and exchange interaction. We quantify the exchange interaction in terms of Landau Fermi-liquid factors. The magnitude and direction of the long-range Josephson current can be manipulated by varying the angles of the injected polarizations with respect to the magnetization in the ferromagnet

    Drift-diffusion model for spin-polarized transport in a non-degenerate 2DEG controlled by a spin-orbit interaction

    Full text link
    We apply the Wigner function formalism to derive drift-diffusion transport equations for spin-polarized electrons in a III-V semiconductor single quantum well. Electron spin dynamics is controlled by the linear in momentum spin-orbit interaction. In a studied transport regime an electron momentum scattering rate is appreciably faster than spin dynamics. A set of transport equations is defined in terms of a particle density, spin density, and respective fluxes. The developed model allows studying of coherent dynamics of a non-equilibrium spin polarization. As an example, we consider a stationary transport regime for a heterostructure grown along the (0, 0, 1) crystallographic direction. Due to the interplay of the Rashba and Dresselhaus spin-orbit terms spin dynamics strongly depends on a transport direction. The model is consistent with results of pulse-probe measurement of spin coherence in strained semiconductor layers. It can be useful for studying properties of spin-polarized transport and modeling of spintronic devices operating in the diffusive transport regime.Comment: 16 pages, 3 figure

    Spin-density induced by electromagnetic wave in two-dimensional electron gas

    Full text link
    We consider the magnetic response of a two-dimensional electron gas (2DEG) with a spin-orbit interaction to a long-wave-length electromagnetic excitation. We observe that the transverse electric field creates spin polarization perpendicular to the 2DEG plane. The effect is more prominent in clean systems with resolved spin-orbit-split subbands, and reaches maximum when the frequency of the wave matches the subband splitting at the Fermi momentum. The relation of this effect to the spin-Hall effect is discussed.Comment: Final published for

    Spin polarizations and spin Hall currents in a two-dimensional electron gas with magnetic impurities

    Get PDF
    We consider a two-dimensional electron gas in the presence of Rashba spin-orbit coupling, and study the effects of magnetic s-wave impurities and long-range non-magnetic disorder on the spin-charge dynamics of the system. We focus on voltage induced spin polarizations and their relation to spin Hall currents. Our results are obtained using the quasiclassical Green function technique, and hold in the full range of the disorder parameter αpFτ\alpha p_F\tau.Comment: 5 pages, 2 figures. References added, minor stylistic modification

    Electric-field induced spin excitations in two-dimensional spin-orbit coupled systems

    Full text link
    Rigorous coupled spin-charge drift-diffusion equations are derived from quantum-kinetic equations for the spin-density matrix that incorporate effects due to k-linear spin-orbit interaction, an in-plane electric field, and the elastic scattering on nonmagnetic impurities. The explicit analytical solution for the induced magnetization exhibits a pole structure, from which the dispersion relations of spin excitations are identified. Applications of the general approach refer to the excitation of long-lived field-induced spin waves by optically generated spin and charge patterns. This approach transfers methods known in the physics of space-charge waves to the treatment of spin eigenmodes. In addition, the amplification of an oscillating electric field by spin injection is demonstrated.Comment: 17 pages, 3 figure

    Spin diffusion/transport in nn-type GaAs quantum wells

    Full text link
    The spin diffusion/transport in nn-type (001) GaAs quantum well at high temperatures (≥120\ge120 K) is studied by setting up and numerically solving the kinetic spin Bloch equations together with the Poisson equation self-consistently. All the scattering, especially the electron-electron Coulomb scattering, is explicitly included and solved in the theory. This enables us to study the system far away from the equilibrium, such as the hot-electron effect induced by the external electric field parallel to the quantum well. We find that the spin polarization/coherence oscillates along the transport direction even when there is no external magnetic field. We show that when the scattering is strong enough, electron spins with different momentums oscillate in the same phase which leads to equal transversal spin injection length and ensemble transversal injection length. It is also shown that the intrinsic scattering is already strong enough for such a phenomena. The oscillation period is almost independent on the external electric field which is in agreement with the latest experiment in bulk system at very low temperature [Europhys. Lett. {\bf 75}, 597 (2006)]. The spin relaxation/dephasing along the diffusion/transport can be well understood by the inhomogeneous broadening, which is caused by the momentum-dependent diffusion and the spin-orbit coupling, and the scattering. The scattering, temperature, quantum well width and external magnetic/electric field dependence of the spin diffusion is studied in detail.Comment: 12 pages, 6 figures, to be published in J Appl. Phy

    Current-Induced Polarization and the Spin Hall Effect at Room Temperature

    Full text link
    Electrically-induced electron spin polarization is imaged in n-type ZnSe epilayers using Kerr rotation spectroscopy. Despite no evidence for an electrically-induced internal magnetic field, current-induced in-plane spin polarization is observed with characteristic spin lifetimes that decrease with doping density. The spin Hall effect is also observed, indicated by an electrically-induced out-of-plane spin polarization with opposite sign for spins accumulating on opposite edges of the sample. The spin Hall conductivity is estimated as 3 +/- 1.5 Ohms**-1 m**-1/|e| at 20 K, which is consistent with the extrinsic mechanism. Both the current-induced spin polarization and the spin Hall effect are observed at temperatures from 10 K to 295 K.Comment: 5 pages, 4 figure

    Randomly incomplete spectra and intermediate statistics

    Full text link
    By randomly removing a fraction of levels from a given spectrum a model is constructed that describes a crossover from this spectrum to a Poisson spectrum. The formalism is applied to the transitions towards Poisson from random matrix theory (RMT) spectra and picket fence spectra. It is shown that the Fredholm determinant formalism of RMT extends naturally to describe incomplete RMT spectra.Comment: 9 pages, 2 figures. To appear in Physical Review

    Finding a needle in an exponential haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning

    Full text link
    We present a sampling-based framework for multi-robot motion planning which combines an implicit representation of a roadmap with a novel approach for pathfinding in geometrically embedded graphs tailored for our setting. Our pathfinding algorithm, discrete-RRT (dRRT), is an adaptation of the celebrated RRT algorithm for the discrete case of a graph, and it enables a rapid exploration of the high-dimensional configuration space by carefully walking through an implicit representation of a tensor product of roadmaps for the individual robots. We demonstrate our approach experimentally on scenarios of up to 60 degrees of freedom where our algorithm is faster by a factor of at least ten when compared to existing algorithms that we are aware of.Comment: Kiril Solovey and Oren Salzman contributed equally to this pape
    • …
    corecore