784 research outputs found

    Chiral symmetry restoration and deconfinement in QCD at finite temperature

    Full text link
    The light-quark correlator in the axial-vector channel is used, in conjunction with finite energy QCD sum rules at finite temperature, in order to (a) establish a relation between chiral-symmetry restoration and deconfinement, and (b) determine the temperature behavior of the a1(1260)a_1(1260) width and coupling. Results indicate that deconfinement takes place at a slightly lower temperature than chiral-symmetry restoration, although this difference is not significant given the accuracy of the method. The behaviour of the a1(1260)a_1(1260) parameters is consistent with quark-gluon deconfinement, as the width grows and the coupling decreases with increasing temperature

    (Pseudo)Scalar Charmonium in Finite Temperature QCD

    Full text link
    The hadronic parameters of pseudoscalar (ηc\eta_c) and scalar (χc\chi_c) charmonium are determined at finite temperature from Hilbert moment QCD sum rules. These parameters are the hadron mass, leptonic decay constant, total width, and continuum threshold (s0s_0). Results for s0(T)s_0(T) in both channels indicate that s0(T)s_0(T) starts approximately constant, and then it decreases monotonically with increasing TT until it reaches the QCD threshold, sth=4mQ2s_{th} = 4 m_Q^2, at a critical temperature T = T_c \simeq 180 \; \mbox{MeV} interpreted as the deconfinement temperature. The other hadronic parameters behave qualitatively similarly to those of the J/ψJ/\psi, as determined in this same framework. The hadron mass is essentially constant, the total width is initially independent of T, and after T/Tc0.80T/T_c \simeq 0.80 it begins to increase with increasing TT up to T/Tc0.90  (0.95)T/T_c \simeq 0.90 \; (0.95) for χc\chi_c (ηc\eta_c), and subsequently it decreases sharply up to T0.94  (0.99)  TcT \simeq 0.94 \; (0.99) \; T_c, for χc\chi_c (ηc\eta_c), beyond which the sum rules are no longer valid. The decay constant of χc\chi_c at first remains basically flat up to T0.80  TcT \simeq 0.80\; T_c, then it starts to decrease up to T0.90  TcT \simeq 0.90 \;T_c, and finally it increases sharply with increasing TT. In the case of ηc\eta_c the decay constant does not change up to T0.80  TcT \simeq 0.80 \;T_c where it begins a gentle increase up to T0.95  TcT \simeq 0.95 \;T_c beyond which it increases dramatically with increasing TT. This behaviour contrasts with that of light-light and heavy-light quark systems, and it suggests the survival of the ηc\eta_c and the χc\chi_c states beyond the critical temperature, as already found for the J/ψJ/\psi from similar QCD sum rules. These conclusions are very stable against changes in the critical temperature in the wide range T_c = 180 - 260 \; \mbox{MeV}.Comment: 12 pages, 5 figures. A wide range of critical temperatures has been considered. No qualitative changes to the conclusion

    On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space

    Get PDF
    We study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras sl(2,R)sl(2,\mathbb{R}) or su(2)su(2) according to the relation between the noncommutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential. PACS: 03.65.-w; 03.65.Fd MSC: 81R05; 20C35; 22E70Comment: 49 pages. No figures. Version to appear in JP

    Gamow-Jordan Vectors and Non-Reducible Density Operators from Higher Order S-Matrix Poles

    Get PDF
    In analogy to Gamow vectors that are obtained from first order resonance poles of the S-matrix, one can also define higher order Gamow vectors which are derived from higher order poles of the S-matrix. An S-matrix pole of r-th order at z_R=E_R-i\Gamma/2 leads to r generalized eigenvectors of order k= 0, 1, ... , r-1, which are also Jordan vectors of degree (k+1) with generalized eigenvalue (E_R-i\Gamma/2). The Gamow-Jordan vectors are elements of a generalized complex eigenvector expansion, whose form suggests the definition of a state operator (density matrix) for the microphysical decaying state of this higher order pole. This microphysical state is a mixture of non-reducible components. In spite of the fact that the k-th order Gamow-Jordan vectors has the polynomial time-dependence which one always associates with higher order poles, the microphysical state obeys a purely exponential decay law.Comment: 39 pages, 3 PostScript figures; sub2.eps may stall some printers and should then be printed out separately; ghostview is o.

    Chiral Condensates in Quark and nuclear Matter

    Full text link
    We present a novel treatment for calculating the in-medium quark condensates. The advantage of this approach is that one does not need to make further assumptions on the derivatives of model parameters with respect to the quark current mass. The normally accepted model-independent result in nuclear matter is naturally reproduced. The change of the quark condensate induced by interactions depends on the incompressibility of nuclear matter. When it is greater than 260 MeV, the density at which the condensate vanishes is higher than that from the linear extrapolation. For the chiral condensate in quark matter, a similar model-independent linear behavior is found at lower densities, which means that the decreasing speed of the condensate in quark matter is merely half of that in nuclear matter if the pion-nucleon sigma commutator is six times the average current mass of u and d quarks. The modification due to QCD-like interactions is found to slow the decreasing speed of the condensate, compared with the linear extrapolation.Comment: 12 pages, 7 figures, revtex4 styl

    Thermal nonlocal Nambu--Jona-Lasinio model in the real time formalism

    Full text link
    The real-time formalism at finite temperature and chemical potential for the nonlocal Nambu--Jona-Lasinio model is developed in the presence of a Gaussian covariant regulator. We construct the most general thermal propagator, by means of the spectral function. As a result, the model involves the propagation of massive quasiparticles. The appearance of complex poles is interpreted as a confinement signal, and in this case we have unstable quasiparticles with a finite decay width. An expression for the propagator along the critical line, where complex poles start to appear, is also obtained. A generalization to other covariant regulators is proposed.Comment: 9 pages, 5 figures, minor changes, to appear in Phys. Rev.

    Pion condensation in quark matter with finite baryon density

    Full text link
    The phase structure of the Nambu -- Jona-Lasinio model at zero temperature and in the presence of baryon- and isospin chemical potentials is investigated. It is shown that in the chiral limit and for a wide range of model parameters there exist two different phases with pion condensation. In the first, ordinary phase, quarks are gapped particles. In the second, gapless pion condensation phase, there is no energy cost for creating only uu- or both uu and dd quarks, and the density of baryons is nonzero.Comment: 7 pages, 6 figures; two references adde

    Space storm measurements of the July 2005 solar extreme events from the low corona to the Earth

    Full text link
    The Athens Neutron Monitor Data Processing (ANMODAP) Center recorded an unusual Forbush decrease with a sharp enhancement of cosmic ray intensity right after the main phase of the Forbush decrease on 16 July 2005, followed by a second decrease within less than 12 h. This exceptional event is neither a ground level enhancement nor a geomagnetic effect in cosmic rays. It rather appears as the effect of a special structure of interplanetary disturbances originating from a group of coronal mass ejections (CMEs) in the 13-14 July 2005 period. The initiation of the CMEs was accompanied by type IV radio bursts and intense solar flares (SFs) on the west solar limb (AR 786); this group of energetic phenomena appears under the label of Solar Extreme Events of July 2005. We study the characteristics of these events using combined data from Earth (the ARTEMIS IV radioheliograph, the Athens Neutron Monitor (ANMODAP)), space (WIND/WAVES) and data archives. We propose an interpretation of the unusual Forbush profile in terms of a magnetic structure and a succession of interplanetary shocks interacting with the magnetosphere.Comment: Advances in Space Research, Volume 43, Issue 4, p. 600-60
    corecore