317 research outputs found

    Influence of structural disorder and large-scale geometric fluctuations on the Coherent Transport of Metallic Junctions and Molecular Wires

    Full text link
    Structural disorder is present in almost all experimental measurements of electronic transport through single molecules or molecular wires. To assess its influence on the conductance is computationally demanding, because a large number of conformations must be considered. Here we analyze an approximate recursive layer Green function approach for the ballistic transport through quasi one-dimensional nano-junctions. We find a rapid convergence of the method with its control parameter, the layer thickness, and good agreement with existing experimental and theoretical data. Because the computational effort rises only linearly with system size, this method permits treatment of very large systems. We investigate the conductance of gold- and silver wires of different sizes and conformations. For weak electrode disorder and imperfect coupling between electrode and wire we find conductance variations of approximately 20%. Overall we find the conductance of silver junctions well described by the immediate vicinity of narrowest point in the junction, a result that may explain the observation of well-conserved conductance plateaus in recent experiments on silver junctions. In an application to flexible oligophene wires, we find that strongly distorted conformations that are sterically forbidden at zero temperature, contribute significantly to the observed average zero-bias conductance of the molecular wire

    Evolution of SU(4) Transport Regimes in Carbon Nanotube Quantum Dots

    Full text link
    We study the evolution of conductance regimes in carbon nanotubes with doubly degenerate orbitals (``shells'') by controlling the contact transparency within the same sample. For sufficiently open contacts, Kondo behavior is observed for 1, 2, and 3 electrons in the topmost shell. As the contacts are opened more, the sample enters the ``mixed valence'' regime, where different charge states are strongly hybridized by electron tunneling. Here, the conductance as a function of gate voltage shows pronounced modulations with a period of four electrons, and all single-electron features are washed away at low temperature. We successfully describe this behavior by a simple formula with no fitting parameters. Finally, we find a surprisingly small energy scale that controls the temperature evolution of conductance and the tunneling density of states in the mixed valence regime.Comment: 4 pages + supplementary info. The second part of the original submission is now split off as a separate paper (0709.1288

    Ferromagnetic semiconductor single wall carbon nanotube

    Full text link
    Possibility of a ferromagnetic semiconductor single wall carbon nanotube (SWCNT), where ferromagnetism is due to coupling between doped magnetic impurity on a zigzag SWCNT and electrons spin, is investigate. We found, in the weak impurity-spin couplings, at low impurity concentrations the spin up electrons density of states remain semiconductor while the spin down electrons density of states shows a metallic behavior. By increasing impurity concentrations the semiconducting gap of spin up electrons in the density of states is closed, hence a semiconductor to metallic phase transition is take place. In contrast, for the case of strong coupling, spin up electrons density of states remain semiconductor and spin down electron has metallic behavior. Also by increasing impurity spin magnitude, the semiconducting gap of spin up electrons is increased.Comment: 10 pages and 9 figure

    Double-gap superconducting proximity effect in nanotubes

    Full text link
    We theoretically explore the possibility of a superconducting proximity effect in single-walled metallic carbon nanotubes due to the presence of a superconducting substrate. An unconventional double-gap situation can arise in the two bands for nanotubes of large radius wherein the tunneling is (almost) symmetric in the two sublattices. In such a case, a proximity effect can take place in the symmetric band below a critical experimentally-accessible Coulomb interaction strength in the nanotube. Furthermore, due to interactions in the nanotube, the appearance of a BCS gap in this band stabilizes superconductivity in the other band at lower temperatures. We also discuss the scenario of highly asymmetric tunneling and show that this case too supports double-gap superconductivity.Comment: 4 pages, 2 figure

    Electrical Nanoprobing of Semiconducting Carbon Nanotubes using an Atomic Force Microscope

    Full text link
    We use an Atomic Force Microscope (AFM) tip to locally probe the electronic properties of semiconducting carbon nanotube transistors. A gold-coated AFM tip serves as a voltage or current probe in three-probe measurement setup. Using the tip as a movable current probe, we investigate the scaling of the device properties with channel length. Using the tip as a voltage probe, we study the properties of the contacts. We find that Au makes an excellent contact in the p-region, with no Schottky barrier. In the n-region large contact resistances were found which dominate the transport properties.Comment: 4 pages, 5 figure

    Effects of Disorder and Momentum Relaxation on the Intertube Transport of Incommensurate Carbon Nanotube Ropes and Multiwall Nanotubes

    Full text link
    We study theoretically the electrical transport between aligned carbon nanotubes in nanotube ropes, and between shells in multiwall carbon nanotubes. We focus on transport between two metallic nanotubes (or shells) of different chiralities with mismatched Fermi momenta and incommensurate periodicities. We perform numerical calculations of the transport properties of such systems within a tight-binding formalism. For clean (disorder-free) nanotubes the intertube transport is strongly suppressed as a result of momentum conservation. For clean nanotubes, the intertube transport is typically dominated by the loss of momentum conservation at the contacts. We discuss in detail the effects of disorder, which also breaks momentum conservation, and calculate the effects of localised scatterers of various types. We show that physically relevant disorder potentials lead to very dramatic enhancements of the intertube conductance. We show that recent experimental measurements of the intershell transport in multiwall nanotubes are consistent with our theoretical results for a model of short-ranged correlated disorder.Comment: References adde

    Observation and Spectroscopy of a Two-Electron Wigner Molecule in an Ultra-Clean Carbon Nanotube

    Get PDF
    Coulomb interactions can have a decisive effect on the ground state of electronic systems. The simplest system in which interactions can play an interesting role is that of two electrons on a string. In the presence of strong interactions the two electrons are predicted to form a Wigner molecule, separating to the ends of the string due to their mutual repulsion. This spatial structure is believed to be clearly imprinted on the energy spectrum, yet to date a direct measurement of such a spectrum in a controllable one-dimensional setting is still missing. Here we use an ultra-clean suspended carbon nanotube to realize this system in a tunable potential. Using tunneling spectroscopy we measure the excitation spectra of two interacting carriers, electrons or holes, and identify seven low-energy states characterized by their spin and isospin quantum numbers. These states fall into two multiplets according to their exchange symmetries. The formation of a strongly-interacting Wigner molecule is evident from the small energy splitting measured between the two multiplets, that is quenched by an order of magnitude compared to the non-interacting value. Our ability to tune the two-electron state in space and to study it for both electrons and holes provides an unambiguous demonstration of the fundamental Wigner molecule state.Comment: SP and FK contributed equally to this wor

    Dynamic nuclear polarization at the edge of a two-dimensional electron gas

    Full text link
    We have used gated GaAs/AlGaAs heterostructures to explore nonlinear transport between spin-resolved Landau level (LL) edge states over a submicron region of two-dimensional electron gas (2DEG). The current I flowing from one edge state to the other as a function of the voltage V between them shows diode-like behavior---a rapid increase in I above a well-defined threshold V_t under forward bias, and a slower increase in I under reverse bias. In these measurements, a pronounced influence of a current-induced nuclear spin polarization on the spin splitting is observed, and supported by a series of NMR experiments. We conclude that the hyperfine interaction plays an important role in determining the electronic properties at the edge of a 2DEG.Comment: 8 pages RevTeX, 7 figures (GIF); submitted to Phys. Rev.

    Coupling of spin and orbital motion of electrons in carbon nanotubes

    Get PDF
    Electrons in atoms possess both spin and orbital degrees of freedom. In non-relativistic quantum mechanics, these are independent, resulting in large degeneracies in atomic spectra. However, relativistic effects couple the spin and orbital motion leading to the well-known fine structure in their spectra. The electronic states in defect-free carbon nanotubes (NTs) are widely believed to be four-fold degenerate, due to independent spin and orbital symmetries, and to also possess electron-hole symmetry. Here we report measurements demonstrating that in clean NTs the spin and orbital motion of electrons are coupled, thereby breaking all of these symmetries. This spin-orbit coupling is directly observed as a splitting of the four-fold degeneracy of a single electron in ultra-clean quantum dots. The coupling favours parallel alignment of the orbital and spin magnetic moments for electrons and anti-parallel alignment for holes. Our measurements are consistent with recent theories that predict the existence of spin-orbit coupling in curved graphene and describe it as a spin-dependent topological phase in NTs. Our findings have important implications for spin-based applications in carbon-based systems, entailing new design principles for the realization of qubits in NTs and providing a mechanism for all-electrical control of spins in NTs.Comment: 14 pages, 6 figure

    Electronic Transport Spectroscopy of Carbon Nanotubes in a Magnetic Field

    Full text link
    We report magnetic field spectroscopy measurements in carbon nanotube quantum dots exhibiting four-fold shell structure in the energy level spectrum. The magnetic field induces a large splitting between the two orbital states of each shell, demonstrating their opposite magnetic moment and determining transitions in the spin and orbital configuration of the quantum dot ground state. We use inelastic cotunneling spectroscopy to accurately resolve the spin and orbital contributions to the magnetic moment. A small coupling is found between orbitals with opposite magnetic moment leading to anticrossing behavior at zero field.Comment: 7 pages, 4 figure
    • …
    corecore