183 research outputs found
Evidence of 1D behaviour of He confined within carbon-nanotube bundles
We present the first low-temperature thermodynamic investigation of the
controlled physisorption of He gas in carbon single-wall nanotube (SWNT)
samples. The vibrational specific heat measured between 100 mK and 6 K
demonstrates an extreme sensitivity to outgassing conditions. For bundles with
a few number of NTs the extra contribution to the specific heat, C,
originating from adsorbed He at very low density displays 1D behavior,
typical for He atoms localized within linear channels as grooves and
interstitials, for the first time evidenced. For larger bundles, C
recovers the 2D behaviour akin to the case of He films on planar
substrates (grafoil).Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
Fractional power-law susceptibility and specific heat in low temperature insulating state of o-TaS_{3}
Measurements of the magnetic susceptibility and its anisotropy in the
quasi-one-dimensional system o-TaS_{3} in its low-T charge density wave (CDW)
ground state are reported. Both sets of data reveal below 40 K an extra
paramagnetic contribution obeying a power-law temperature dependence
\chi(T)=AT^{-0.7}. The fact that the extra term measured previously in specific
heat in zero field, ascribed to low-energy CDW excitations, also follows a
power law C_{LEE}(0,T)=CT^{0.3}, strongly revives the case of random exchange
spin chains. Introduced impurities (0.5% Nb) only increase the amplitude C, but
do not change essentially the exponent. Within the two-level system (TLS)
model, we estimate from the amplitudes A and C that there is one TLS with a
spin s=1/2 localized on the chain at the lattice site per cca 900 Ta atoms. We
discuss the possibility that it is the charge frozen within a soliton-network
below the glass transition T_{g}~40 K determined recently in this system.Comment: 7 pages, 3 figures, submitted to Europhysics Letter
Damping and decoherence of a nanomechanical resonator due to a few two level systems
We consider a quantum model of a nanomechanical flexing beam resonator
interacting with a bath comprising a few damped tunneling two level systems
(TLS's). In contrast with a resonator interacting bilinearly with an ohmic free
oscillator bath (modeling clamping loss, for example), the mechanical resonator
damping is amplitude dependent, while the decoherence of quantum superpositions
of mechanical position states depends only weakly on their spatial separation
Стимулирование инновационной активности персонала компании НГК
Объектом исследования выступает публичное акционерное общество "Газпром" и его дочернее общество с ограниченной ответственность "Газпром трансгаз Томск". Актуальность объясняется тем, что в настоящее время остаются открытыми вопросы привлечения ненаучного персонала предприятий нефтегазового комплекса к участию в инновационной деятельности. Целью работы является разработка способов стимулирования персонала предприятия нефтегазового комплекса к проявлению инновационной и рационализаторской активности. В исследовании проводился анализ применяемых способов мотивации и поощрения инновационных сотрудников предприятия нефтегазового комплекса. При проведении анализа выявляются ключевые проблемы стимулирования и предлагаются возможные решения.The object of the study is PJSC "Gazprom" and OOO "Gazprom transgaz Tomsk". The relevance is explained by the fact that at present the issues of attracting non-scientific personnel of oil and gas enterprises to participate in innovation remain open. The aim of the work is to develop ways to stimulate the personnel of the oil and gas complex to participate in innovation and rationalization activities. The study analyzed the methods used to motivate and encourage innovative employees of the oil and gas industry. The analysis identifies key incentive problems and suggests possible solutions
Проектирование системы хранения и внутрицеховой транспортировки печатных плат
С учетом принципов модульности, эргономичности и функциональности в проекте разработана система хранения и внутрицеховой транспортировки печатных плат, соответствующая современным стилям и направлениям промышленного дизайна.Taking into account the principles of modularity, ergonomics and functionality in the technologies of storage and in-house transportation of printed circuit boards corresponding to modern styles and directions of industrial design
Molecular-field approach to the spin-Peierls transition in CuGeO_3
We present a theory for the spin-Peierls transition in CuGeO_3. We map the
elementary excitations of the dimerized chain (solitons) on an effective Ising
model. Inter-chain coupling (or phonons) then introduce a linear binding
potential between a pair of soliton and anti-soliton, leading to a finite
transition temperature. We evaluate, as a function of temperature, the order
parameter, the singlet-triplet gap, the specific heat, and the susceptibility
and compare with experimental data on CuGeO_3. We find that CuGeO_3 is close to
a first-order phase transition. We point out, that the famous scaling law
\sim\delta^{2/3} of the triplet gap is a simple consequence of the linear
binding potential between pairs of solitons and anti-solitons in dimerized spin
chains.Comment: 7.1 pages, figures include
Second Low Temperature Phase Transition in Frustrated UNi_4B
Hexagonal UNi_4B is magnetically frustrated, yet it orders
antiferromagnetically at T_N = 20 K. However, one third of the U-spins remain
paramagnetic below this temperature. In order to track these spins to lower
temperature, we measured the specific heat C of \unib between 100 mK and 2 K,
and in applied fields up to 9 T. For zero field there is a sharp kink in C at
330 mK, which we interpret as an indication of a second phase
transition involving paramagnetic U. The rise in between 7 K and
330 mK and the absence of a large entropy liberated at may be due to a
combination of Kondo screening effects and frustration that strongly modifies
the low T transition.Comment: 4 pages, 4 figure
Boson gas in a periodic array of tubes
We report the thermodynamic properties of an ideal boson gas confined in an
infinite periodic array of channels modeled by two, mutually perpendicular,
Kronig-Penney delta-potentials. The particle's motion is hindered in the x-y
directions, allowing tunneling of particles through the walls, while no
confinement along the z direction is considered. It is shown that there exists
a finite Bose- Einstein condensation (BEC) critical temperature Tc that
decreases monotonically from the 3D ideal boson gas (IBG) value as the
strength of confinement is increased while keeping the channel's cross
section, constant. In contrast, Tc is a non-monotonic function of
the cross-section area for fixed . In addition to the BEC cusp, the
specific heat exhibits a set of maxima and minima. The minimum located at the
highest temperature is a clear signal of the confinement effect which occurs
when the boson wavelength is twice the cross-section side size. This
confinement is amplified when the wall strength is increased until a
dimensional crossover from 3D to 1D is produced. Some of these features in the
specific heat obtained from this simple model can be related, qualitatively, to
at least two different experimental situations: He adsorbed within the
interstitial channels of a bundle of carbon nanotubes and
superconductor-multistrand-wires NbSn.Comment: 9 pages, 10 figures, submitte
- …