4,963 research outputs found

    Parameterized Model-Checking for Timed-Systems with Conjunctive Guards (Extended Version)

    Full text link
    In this work we extend the Emerson and Kahlon's cutoff theorems for process skeletons with conjunctive guards to Parameterized Networks of Timed Automata, i.e. systems obtained by an \emph{apriori} unknown number of Timed Automata instantiated from a finite set U1,,UnU_1, \dots, U_n of Timed Automata templates. In this way we aim at giving a tool to universally verify software systems where an unknown number of software components (i.e. processes) interact with continuous time temporal constraints. It is often the case, indeed, that distributed algorithms show an heterogeneous nature, combining dynamic aspects with real-time aspects. In the paper we will also show how to model check a protocol that uses special variables storing identifiers of the participating processes (i.e. PIDs) in Timed Automata with conjunctive guards. This is non-trivial, since solutions to the parameterized verification problem often relies on the processes to be symmetric, i.e. indistinguishable. On the other side, many popular distributed algorithms make use of PIDs and thus cannot directly apply those solutions

    Randomized benchmarking of single and multi-qubit control in liquid-state NMR quantum information processing

    Full text link
    Being able to quantify the level of coherent control in a proposed device implementing a quantum information processor (QIP) is an important task for both comparing different devices and assessing a device's prospects with regards to achieving fault-tolerant quantum control. We implement in a liquid-state nuclear magnetic resonance QIP the randomized benchmarking protocol presented by Knill et al (PRA 77: 012307 (2008)). We report an error per randomized π2\frac{\pi}{2} pulse of 1.3±0.1×1041.3 \pm 0.1 \times 10^{-4} with a single qubit QIP and show an experimentally relevant error model where the randomized benchmarking gives a signature fidelity decay which is not possible to interpret as a single error per gate. We explore and experimentally investigate multi-qubit extensions of this protocol and report an average error rate for one and two qubit gates of 4.7±0.3×1034.7 \pm 0.3 \times 10^{-3} for a three qubit QIP. We estimate that these error rates are still not decoherence limited and thus can be improved with modifications to the control hardware and software.Comment: 10 pages, 6 figures, submitted versio

    Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking

    Full text link
    One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking

    The NIR structure of the barred galaxy NGC253 from VISTA

    Full text link
    [abridged] We used J and Ks band images acquired with the VISTA telescope as part of the science verification to quantify the structures in the stellar disk of the barred Sc galaxy NGC253. Moving outward from the galaxy center, we find a nuclear ring within the bright 1 kpc diameter nucleus, then a bar, a ring with 2.9 kpc radius. From the Ks image we obtain a new measure of the deprojected length of the bar of 2.5 kpc. The bar's strength, as derived from the curvature of the dust lanes in the J-Ks image, is typical of weak bars. From the deprojected length of the bar, we establish the corotation radius (R_CR=3 kpc) and bar pattern speed (Omega_b = 61.3 km /s kpc), which provides the connection between the high-frequency structures in the disk and the orbital resonances induced by the bar. The nuclear ring is located at the inner Lindblad resonance. The second ring does not have a resonant origin, but it could be a merger remnant or a transient structure formed during an intermediate stage of the bar formation. The inferred bar pattern speed places the outer Lindblad resonance within the optical disk at 4.9 kpc, in the same radial range as the peak in the HI surface density. The disk of NGC253 has a down-bending profile with a break at R~9.3 kpc, which corresponds to about 3 times the scale length of the inner disk. We discuss the evidence for a threshold in star formation efficiency as a possible explanation of the steep gradient in the surface brightness profile at large radii. The NIR photometry unveils the dynamical response of the NGC253 stellar disk to its central bar. The formation of the bar may be related to the merger event that determined the truncation of stars and gas at large radii and the perturbation of the disk's outer edge.Comment: Accepted for publication in Astronomy & Astrphysics. High resolution pdf file is available at the following link: https://www.dropbox.com/s/4o4cofs1lyjrtpv/NGC253.pd

    The Quantum Mechanics of Hyperion

    Full text link
    This paper is motivated by the suggestion [W. Zurek, Physica Scripta, T76, 186 (1998)] that the chaotic tumbling of the satellite Hyperion would become non-classical within 20 years, but for the effects of environmental decoherence. The dynamics of quantum and classical probability distributions are compared for a satellite rotating perpendicular to its orbital plane, driven by the gravitational gradient. The model is studied with and without environmental decoherence. Without decoherence, the maximum quantum-classical (QC) differences in its average angular momentum scale as hbar^{2/3} for chaotic states, and as hbar^2 for non-chaotic states, leading to negligible QC differences for a macroscopic object like Hyperion. The quantum probability distributions do not approach their classical limit smoothly, having an extremely fine oscillatory structure superimposed on the smooth classical background. For a macroscopic object, this oscillatory structure is too fine to be resolved by any realistic measurement. Either a small amount of smoothing (due to the finite resolution of the apparatus) or a very small amount of environmental decoherence is sufficient ensure the classical limit. Under decoherence, the QC differences in the probability distributions scale as (hbar^2/D)^{1/6}, where D is the momentum diffusion parameter. We conclude that decoherence is not essential to explain the classical behavior of macroscopic bodies.Comment: 17 pages, 24 figure

    Pax3 synergizes with Gli2 and Zic1 in transactivating the Myf5 epaxial somite enhancer

    Get PDF
    AbstractBoth Glis, the downstream effectors of hedgehog signaling, and Zic transcription factors are required for Myf5 expression in the epaxial somite. Here we demonstrate a novel synergistic interaction between members of both families and Pax3, a paired-domain transcription factor that is essential for both myogenesis and neural crest development. We show that Pax3 synergizes with both Gli2 and Zic1 in transactivating the Myf5 epaxial somite (ES) enhancer in concert with the Myf5 promoter. This synergy is dependent on conserved functional domains of the proteins, as well as on a novel homeodomain motif in the Myf5 promoter and the essential Gli motif in the ES enhancer. Importantly, overexpression of Zic1 and Pax3 in the 10T1/2 mesodermal cell model results in enrichment of these factors at the endogenous Myf5 locus and induction of Myf5 expression. In our previous work, we showed that by enhancing nuclear translocation of Gli factors, Zics provide spatiotemporal patterning for Gli family members in the epaxial induction of Myf5 expression. Our current study indicates a complementary mechanism in which association with DNA-bound Pax3 strengthens the ability of both Zic1 and Gli2 to transactivate Myf5 in the epaxial somite

    Model Checking CTL is Almost Always Inherently Sequential

    Get PDF
    The model checking problem for CTL is known to be P-complete (Clarke, Emerson, and Sistla (1986), see Schnoebelen (2002)). We consider fragments of CTL obtained by restricting the use of temporal modalities or the use of negations---restrictions already studied for LTL by Sistla and Clarke (1985) and Markey (2004). For all these fragments, except for the trivial case without any temporal operator, we systematically prove model checking to be either inherently sequential (P-complete) or very efficiently parallelizable (LOGCFL-complete). For most fragments, however, model checking for CTL is already P-complete. Hence our results indicate that, in cases where the combined complexity is of relevance, approaching CTL model checking by parallelism cannot be expected to result in any significant speedup. We also completely determine the complexity of the model checking problem for all fragments of the extensions ECTL, CTL+, and ECTL+

    Information-theoretic equilibration: the appearance of irreversibility under complex quantum dynamics

    Full text link
    The question of how irreversibility can emerge as a generic phenomena when the underlying mechanical theory is reversible has been a long-standing fundamental problem for both classical and quantum mechanics. We describe a mechanism for the appearance of irreversibility that applies to coherent, isolated systems in a pure quantum state. This equilibration mechanism requires only an assumption of sufficiently complex internal dynamics and natural information-theoretic constraints arising from the infeasibility of collecting an astronomical amount of measurement data. Remarkably, we are able to prove that irreversibility can be understood as typical without assuming decoherence or restricting to coarse-grained observables, and hence occurs under distinct conditions and time-scales than those implied by the usual decoherence point of view. We illustrate the effect numerically in several model systems and prove that the effect is typical under the standard random-matrix conjecture for complex quantum systems.Comment: 15 pages, 7 figures. Discussion has been clarified and additional numerical evidence for information theoretic equilibration is provided for a variant of the Heisenberg model as well as one and two-dimensional random local Hamiltonian

    Postmetamorphic ontogenetic allometry and the evolution of skull shape in Nest-building frogs Leptodactylus (Anura: Leptodactylidae)

    Get PDF
    Allometry constitutes an important source of morphological variation. However, its influence in head development in anurans has been poorly explored. By using geometric morphometrics followed by statistical and comparative methods we analyzed patterns of allometric change during cranial postmetamorphic ontogeny in species of Nest-building frogs Leptodactylus (Leptodactylidae). We found that the anuran skull is not a static structure, and allometry plays an important role in defining its shape in this group. Similar to other groups with biphasic life-cycle, and following a general trend in vertebrates, ontogenetic changes mostly involve rearrangement in rostral, otoccipital, and suspensorium regions. Ontogenetic transformations are paralleled by shape changes associated with evolutionary change in size, such that the skulls of species of different intrageneric groups are scaled to each other, and small and large species show patterns of paedomorphic/peramorphic features, respectively. Allometric trajectories producing those phenotypes are highly evolvable though, with shape change direction and magnitude varying widely among clades, and irrespective of changes in absolute body size. These results reinforce the importance of large-scale comparisons of growth patterns to understand the plasticity, evolution, and polarity of morphological changes in different clades.Fil: Duport Bru, Ana Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Ponssa, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Vera Candioti, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentin
    corecore