35,886 research outputs found

    Kondo effect in coupled quantum dots with RKKY interaction: Finite temperature and magnetic field effects

    Full text link
    We study transport through two quantum dots coupled by an RKKY interaction as a function of temperature and magnetic field. By applying the Numerical Renormalization Group (NRG) method we obtain the transmission and the linear conductance. At zero temperature and magnetic field, we observe a quantum phase transition between the Kondo screened state and a local spin singlet as the RKKY interaction is tuned. Above the critical RKKY coupling the Kondo peak is split. However, we find that both finite temperature and magnetic field restore the Kondo resonance. Our results agree well with recent transport experiments on gold grain quantum dots in the presence of magnetic impurities.Comment: 4 pages, 5 figure

    Two-stage Kondo effect in side-coupled quantum dots: Renormalized perturbative scaling theory and Numerical Renormalization Group analysis

    Full text link
    We study numerically and analytically the dynamical (AC) conductance through a two-dot system, where only one of the dots is coupled to the leads but it is also side-coupled to the other dot through an antiferromagnetic exchange (RKKY) interaction. In this case the RKKY interaction gives rise to a ``two-stage Kondo effect'' where the two spins are screened by two consecutive Kondo effects. We formulate a renormalized scaling theory that captures remarkably well the cross-over from the strongly conductive correlated regime to the low temperature low conductance state. Our analytical formulas agree well with our numerical renormalization group results. The frequency dependent current noise spectrum is also discussed.Comment: 6 pages, 7 figure

    Burst-by-Burst Adaptive Decision Feedback Equalised TCM, TTCM and BICM for H.263-Assisted Wireless Video Telephony

    No full text
    Decision Feedback Equaliser (DFE) aided wideband Burst-by-Burst (BbB) Adaptive Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM) and Bit-Interleaved Coded Modulation (BICM) assisted H.263-based video transceivers are proposed and characterised in performance terms when communicating over the COST 207 Typical Urban wideband fading channel. Specifically, four different modulation modes, namely 4QAM, 8PSK, 16QAM and 64QAM are invoked and protected by the above-mentioned coded modulation schemes. The TTCM assisted scheme was found to provide the best video performance, although at the cost of the highest complexity. A range of lower-complexity arrangements will also be characterised. Finally, in order to confirm these findings in an important practical environment, we have also investigated the adaptive TTCM scheme in the CDMA-based Universal Mobile Telecommunications System's (UMTS) Terrestrial Radio Access (UTRA) scenario and the good performance of adaptive TTCM scheme recorded when communicating over the COST 207 channels was retained in the UTRA environment

    Rotational covariance and light-front current matrix elements

    Full text link
    Light-front current matrix elements for elastic scattering from hadrons with spin~1 or greater must satisfy a nontrivial constraint associated with the requirement of rotational covariance for the current operator. Using a model ρ\rho meson as a prototype for hadronic quark models, this constraint and its implications are studied at both low and high momentum transfers. In the kinematic region appropriate for asymptotic QCD, helicity rules, together with the rotational covariance condition, yield an additional relation between the light-front current matrix elements.Comment: 16 pages, [no number

    Dynamics of composite Haldane spin chains in IPA-CuCl3

    Full text link
    Magnetic excitations in the quasi-one-dimensional antiferromagnet IPA-CuCl3 are studied by cold neutron inelastic scattering. Strongly dispersive gap excitations are observed. Contrary to previously proposed models, the system is best described as an asymmetric quantum spin ladder. The observed spectrum is interpreted in terms of ``composite'' Haldane spin chains. The key difference from actual S=1 chains is a sharp cutoff of the single-magnon spectrum at a certain critical wave vector.Comment: 4 pages 4 figure

    The effect of network structure on phase transitions in queuing networks

    Get PDF
    Recently, De Martino et al have presented a general framework for the study of transportation phenomena on complex networks. One of their most significant achievements was a deeper understanding of the phase transition from the uncongested to the congested phase at a critical traffic load. In this paper, we also study phase transition in transportation networks using a discrete time random walk model. Our aim is to establish a direct connection between the structure of the graph and the value of the critical traffic load. Applying spectral graph theory, we show that the original results of De Martino et al showing that the critical loading depends only on the degree sequence of the graph -- suggesting that different graphs with the same degree sequence have the same critical loading if all other circumstances are fixed -- is valid only if the graph is dense enough. For sparse graphs, higher order corrections, related to the local structure of the network, appear.Comment: 12 pages, 7 figure

    An Optimal Algorithm for the Maximum-Density Segment Problem

    Full text link
    We address a fundamental problem arising from analysis of biomolecular sequences. The input consists of two numbers wminw_{\min} and wmaxw_{\max} and a sequence SS of nn number pairs (ai,wi)(a_i,w_i) with wi>0w_i>0. Let {\em segment} S(i,j)S(i,j) of SS be the consecutive subsequence of SS between indices ii and jj. The {\em density} of S(i,j)S(i,j) is d(i,j)=(ai+ai+1+...+aj)/(wi+wi+1+...+wj)d(i,j)=(a_i+a_{i+1}+...+a_j)/(w_i+w_{i+1}+...+w_j). The {\em maximum-density segment problem} is to find a maximum-density segment over all segments S(i,j)S(i,j) with wminwi+wi+1+...+wjwmaxw_{\min}\leq w_i+w_{i+1}+...+w_j \leq w_{\max}. The best previously known algorithm for the problem, due to Goldwasser, Kao, and Lu, runs in O(nlog(wmaxwmin+1))O(n\log(w_{\max}-w_{\min}+1)) time. In the present paper, we solve the problem in O(n) time. Our approach bypasses the complicated {\em right-skew decomposition}, introduced by Lin, Jiang, and Chao. As a result, our algorithm has the capability to process the input sequence in an online manner, which is an important feature for dealing with genome-scale sequences. Moreover, for a type of input sequences SS representable in O(m)O(m) space, we show how to exploit the sparsity of SS and solve the maximum-density segment problem for SS in O(m)O(m) time.Comment: 15 pages, 12 figures, an early version of this paper was presented at 11th Annual European Symposium on Algorithms (ESA 2003), Budapest, Hungary, September 15-20, 200

    Sensitivity of tensor analyzing power in the process d+pd+Xd+p\to d+X to the longitudinal isoscalar form factor of the Roper resonance electroexcitation

    Get PDF
    The tensor analyzing power of the process d+pd+Xd + p \to d + X, for forward deuteron scattering in the momentum interval 3.7 to 9 GeV/c, is studied in the framework of ω\omega exchange in an algebraic collective model for the electroexcitation of nucleon resonances. We point out a special sensitivity of the tensor analyzing power to the isoscalar longitudinal form factor of the Roper resonance excitation. The main argument is that the S11(1535)S_{11}(1535), D13(1520)D_{13}(1520) and S11(1650)S_{11}(1650) resonances have only isovector longitudinal form factors. It is the longitudinal form factor of the Roper excitation, which plays an important role in the tt-dependence of the tensor analyzing power. We discuss possible evidence of swelling of hadrons with increasing excitation energy.Comment: 12 pages, 10 figure

    Quantum phase transitions in a resonant-level model with dissipation: Renormalization-group studies

    Full text link
    We study a spinless level that hybridizes with a fermionic band and is also coupled via its charge to a dissipative bosonic bath. We consider the general case of a power-law hybridization function \Gamma(\w)\propto |\w|^r with r0r\ge 0, and a bosonic bath spectral function B(\w)\propto \w^s with s1s\ge -1. For r<1r<1 and max(0,2r1)<s<1\mathrm{max}(0,2r-1)<s<1, this Bose-Fermi quantum impurity model features a continuous zero-temperature transition between a delocalized phase, with tunneling between the impurity level and the band, and a localized phase, in which dissipation suppresses tunneling in the low-energy limit. The phase diagram and the critical behavior of the model are elucidated using perturbative and numerical renormalization-group techniques, between which there is excellent agreement in the appropriate regimes. For r=0r=0 this model's critical properties coincide with those of the spin-boson and Ising Bose-Fermi Kondo models, as expected from bosonization.Comment: 14 pages, 14 eps figure
    corecore