31,695 research outputs found

    Statistical physics of cerebral embolization leading to stroke

    Full text link
    We discuss the physics of embolic stroke using a minimal model of emboli moving through the cerebral arteries. Our model of the blood flow network consists of a bifurcating tree, into which we introduce particles (emboli) that halt flow on reaching a node of similar size. Flow is weighted away from blocked arteries, inducing an effective interaction between emboli. We justify the form of the flow weighting using a steady flow (Poiseuille) analysis and a more complicated nonlinear analysis. We discuss free flowing and heavily congested limits and examine the transition from free flow to congestion using numerics. The correlation time is found to increase significantly at a critical value, and a finite size scaling is carried out. An order parameter for non-equilibrium critical behavior is identified as the overlap of blockages' flow shadows. Our work shows embolic stroke to be a feature of the cerebral blood flow network on the verge of a phase transition.Comment: 11 pages, 11 figures. Major rewrite including improved justification of the model and a finite size scalin

    Rotational covariance and light-front current matrix elements

    Full text link
    Light-front current matrix elements for elastic scattering from hadrons with spin~1 or greater must satisfy a nontrivial constraint associated with the requirement of rotational covariance for the current operator. Using a model ρ\rho meson as a prototype for hadronic quark models, this constraint and its implications are studied at both low and high momentum transfers. In the kinematic region appropriate for asymptotic QCD, helicity rules, together with the rotational covariance condition, yield an additional relation between the light-front current matrix elements.Comment: 16 pages, [no number

    Dynamics of composite Haldane spin chains in IPA-CuCl3

    Full text link
    Magnetic excitations in the quasi-one-dimensional antiferromagnet IPA-CuCl3 are studied by cold neutron inelastic scattering. Strongly dispersive gap excitations are observed. Contrary to previously proposed models, the system is best described as an asymmetric quantum spin ladder. The observed spectrum is interpreted in terms of ``composite'' Haldane spin chains. The key difference from actual S=1 chains is a sharp cutoff of the single-magnon spectrum at a certain critical wave vector.Comment: 4 pages 4 figure

    The effect of network structure on phase transitions in queuing networks

    Get PDF
    Recently, De Martino et al have presented a general framework for the study of transportation phenomena on complex networks. One of their most significant achievements was a deeper understanding of the phase transition from the uncongested to the congested phase at a critical traffic load. In this paper, we also study phase transition in transportation networks using a discrete time random walk model. Our aim is to establish a direct connection between the structure of the graph and the value of the critical traffic load. Applying spectral graph theory, we show that the original results of De Martino et al showing that the critical loading depends only on the degree sequence of the graph -- suggesting that different graphs with the same degree sequence have the same critical loading if all other circumstances are fixed -- is valid only if the graph is dense enough. For sparse graphs, higher order corrections, related to the local structure of the network, appear.Comment: 12 pages, 7 figure

    An Optimal Algorithm for the Maximum-Density Segment Problem

    Full text link
    We address a fundamental problem arising from analysis of biomolecular sequences. The input consists of two numbers wminw_{\min} and wmaxw_{\max} and a sequence SS of nn number pairs (ai,wi)(a_i,w_i) with wi>0w_i>0. Let {\em segment} S(i,j)S(i,j) of SS be the consecutive subsequence of SS between indices ii and jj. The {\em density} of S(i,j)S(i,j) is d(i,j)=(ai+ai+1+...+aj)/(wi+wi+1+...+wj)d(i,j)=(a_i+a_{i+1}+...+a_j)/(w_i+w_{i+1}+...+w_j). The {\em maximum-density segment problem} is to find a maximum-density segment over all segments S(i,j)S(i,j) with wminwi+wi+1+...+wjwmaxw_{\min}\leq w_i+w_{i+1}+...+w_j \leq w_{\max}. The best previously known algorithm for the problem, due to Goldwasser, Kao, and Lu, runs in O(nlog(wmaxwmin+1))O(n\log(w_{\max}-w_{\min}+1)) time. In the present paper, we solve the problem in O(n) time. Our approach bypasses the complicated {\em right-skew decomposition}, introduced by Lin, Jiang, and Chao. As a result, our algorithm has the capability to process the input sequence in an online manner, which is an important feature for dealing with genome-scale sequences. Moreover, for a type of input sequences SS representable in O(m)O(m) space, we show how to exploit the sparsity of SS and solve the maximum-density segment problem for SS in O(m)O(m) time.Comment: 15 pages, 12 figures, an early version of this paper was presented at 11th Annual European Symposium on Algorithms (ESA 2003), Budapest, Hungary, September 15-20, 200

    Sensitivity of tensor analyzing power in the process d+pd+Xd+p\to d+X to the longitudinal isoscalar form factor of the Roper resonance electroexcitation

    Get PDF
    The tensor analyzing power of the process d+pd+Xd + p \to d + X, for forward deuteron scattering in the momentum interval 3.7 to 9 GeV/c, is studied in the framework of ω\omega exchange in an algebraic collective model for the electroexcitation of nucleon resonances. We point out a special sensitivity of the tensor analyzing power to the isoscalar longitudinal form factor of the Roper resonance excitation. The main argument is that the S11(1535)S_{11}(1535), D13(1520)D_{13}(1520) and S11(1650)S_{11}(1650) resonances have only isovector longitudinal form factors. It is the longitudinal form factor of the Roper excitation, which plays an important role in the tt-dependence of the tensor analyzing power. We discuss possible evidence of swelling of hadrons with increasing excitation energy.Comment: 12 pages, 10 figure

    Quantum phase transitions in a resonant-level model with dissipation: Renormalization-group studies

    Full text link
    We study a spinless level that hybridizes with a fermionic band and is also coupled via its charge to a dissipative bosonic bath. We consider the general case of a power-law hybridization function \Gamma(\w)\propto |\w|^r with r0r\ge 0, and a bosonic bath spectral function B(\w)\propto \w^s with s1s\ge -1. For r<1r<1 and max(0,2r1)<s<1\mathrm{max}(0,2r-1)<s<1, this Bose-Fermi quantum impurity model features a continuous zero-temperature transition between a delocalized phase, with tunneling between the impurity level and the band, and a localized phase, in which dissipation suppresses tunneling in the low-energy limit. The phase diagram and the critical behavior of the model are elucidated using perturbative and numerical renormalization-group techniques, between which there is excellent agreement in the appropriate regimes. For r=0r=0 this model's critical properties coincide with those of the spin-boson and Ising Bose-Fermi Kondo models, as expected from bosonization.Comment: 14 pages, 14 eps figure

    Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties

    Full text link
    Based on a numerical ab initio study, we discuss a structure model for a broad boron sheet, which is the analog of a single graphite sheet, and the precursor of boron nanotubes. The sheet has linear chains of sp hybridized sigma bonds lying only along its armchair direction, a high stiffness, and anisotropic bonds properties. The puckering of the sheet is explained as a mechanism to stabilize the sp sigma bonds. The anisotropic bond properties of the boron sheet lead to a two-dimensional reference lattice structure, which is rectangular rather than triangular. As a consequence the chiral angles of related boron nanotubes range from 0 to 90 degrees. Given the electronic properties of the boron sheets, we demonstrate that all of the related boron nanotubes are metallic, irrespective of their radius and chiral angle, and we also postulate the existence of helical currents in ideal chiral nanotubes. Furthermore, we show that the strain energy of boron nanotubes will depend on their radii, as well as on their chiral angles. This is a rather unique property among nanotubular systems, and it could be the basis of a different type of structure control within nanotechnology.Comment: 16 pages, 17 figures, 2 tables, Versions: v1=preview, v2=first final, v3=minor corrections, v4=document slightly reworke
    corecore