92 research outputs found

    Collapse of the hyperfine magnetic field at the Ru site in ferromagnetic rare earth intermetallics

    Full text link
    The M\"{o}ssbauer Effect(ME) is frequently used to investigate magnetically ordered systems. One usually assumes that the magnetic order induces a hyperfine magnetic field, BhyperfineB_{hyperfine}, at the ME active site. This is the case in the ruthenates, where the temperature dependence of BhyperfineB_{hyperfine} at 99^{99}Ru sites tracks the temperature dependence of the ferromagnetic or antiferromagnetic order. However this does not happen in the rare-earth intermetallics, GdRu2_2 and HoRu2_2. Specific heat, magnetization, magnetic susceptibility, M\"{o}ssbauer effect, and neutron diffraction have been used to study the nature of the magnetic order in these materials. Both materials are found to order ferromagnetically at 82.3 and 15.3 K, respectively. Despite the ferromagnetic order of the rare earth moments in both systems, there is no evidence of a correspondingly large BhyperfineB_{hyperfine} in the M\"{o}ssbauer spectrum at the Ru site. Instead the measured spectra consist of a narrow peak at all temperatures which points to the absence of magnetic order. To understand the surprising absence of a transferred hyperfine magnetic field, we carried out {\it ab initio} calculations which show that spin polarization is present only on the rare-earth site. The electron spin at the Ru sites is effectively unpolarized and, as a result, BhyperfineB_{hyperfine} is very small at those sites. This occurs because the 4dd Ru electrons form broad conduction bands rather than localized moments. These 4dd conduction bands are polarized in the region of the Fermi energy and mediate the interaction between the localized rare earth moments.Comment: 34 pages -Revtex + 17 ps figure

    Discovery of a binary icosahedral quasicrystal in Sc12_12Zn88_88

    Full text link
    We report the discovery of a new binary icosahedral phase in a Sc-Zn alloy obtained through solution-growth, producing millimeter-sized, facetted, single grain, quasicrystals that exhibit different growth morphologies, pentagonal dodecahedra and rhombic triacontahedra, under only marginally different growth conditions. These two morphologies manifest different degrees of quasicrystalline order, or phason strain. The discovery of i-Sc12_12Zn88_88 suggests that a reexamination of binary phase diagrams at compositions close to crystalline approximant structures may reveal other, new binary quasicrystalline phases.Comment: Incorrect spelling in author list resolve

    Itinerant-Electron Magnet of the Pyrochlore Lattice: Indium-Doped YMn2Zn20

    Full text link
    We report on a ternary intermetallic compound, "YMn2Zn20", comprising a pyrochlore lattice made of Mn atoms. A series of In-doped single crystals undergo no magnetic long-range order down to 0.4 K, in spite of the fact that the Mn atom carries a local magnetic moment at high temperatures, showing Curie-Weiss magnetism. However, In-rich crystals exhibit spin-glass transitions at approximately 10 K due to a disorder arising from the substitution, while, with decreasing In content, the spin-glass transition temperature is reduced to 1 K. Then, heat capacity divided by temperature approaches a large value of 280 mJ K-2 mol-1, suggesting a significantly large mass enhancement for conduction electrons. This heavy-fermion-like behavior is not induced by the Kondo effect as in ordinary f-electron compounds, but by an alternative mechanism related to the geometrical frustration on the pyrochlore lattice, as in (Y,Sc)Mn2 and LiV2O4, which may allow spin entropy to survive down to low temperatures and to couple with conduction electrons.Comment: 5 pages, 4 figures, J. Phys. Soc. Jpn., in pres

    Enhanced Reactivity of Lithium and Copper at High Pressure

    Get PDF
    High pressure can profoundly affect the electronic structure and reactivity, creating compounds between elements that do not react at ambient conditions. Lithium is known to react with gold and silver; however, no copper compounds are known to date. By compressing mixtures of the elements in diamond-anvil cells, compounds of lithium and copper have been synthesized and characterized by X-ray diffraction for the first time. Pressures as low as 1 GPa lead to the formation of a complex layered phase LiCu, displaying two-dimensional kagomé lattice layers of Cu atoms. With increasing pressure, the layered Cu–Cu bonding is replaced by linear chains of Cu atoms in the high-pressure phase Li2_2Cu. Here we show the powerful effects of even modest pressures on the reactivity of lithium, leading to structures of remarkable complexity and low-dimensional transition metal bonding

    Variation of the magnetic ordering in GdT2_2Zn20_{20} (T= Fe, Ru, Os, Co, Rh and Ir) and its correlation with the electronic structure of isostructural YT2_2Zn20_{20}

    Get PDF
    Magnetization, resistivity and specific heat measurements were performed on the solution-grown, single crystals of six GdT2_2Zn20_{20} (T = Fe, Ru, Os, Co, Rh and Ir) compounds, as well as their Y analogues. For the Gd compounds, the Fe column members manifest a ferromagnetic (FM) ground state (with an enhanced Curie temperature, TCT_{\mathrm{C}}, for T = Fe and Ru), whereas the Co column members manifest an antiferromagnetic (AFM) ground state. Thermodynamic measurements on the YT2_2Zn20_{20} revealed that the enhanced TCT_{\mathrm{C}} for GdFe2_2Zn20_{20} and GdRu2_2Zn20_{20} can be understood within the framework of Heisenberg moments embedded in a nearly ferromagnetic Fermi liquid. Furthermore, electronic structure calculations indicate that this significant enhancement is due to large, close to the Stoner FM criterion, transition metal partial density of states at Fermi level, whereas the change of FM to AFM ordering is associated with filling of electronic states with two additional electrons per formula unit. The degree of this sensitivity is addressed by the studies of the pseudo-ternary compounds Gd(Fex_xCo1−x_{1-x})2_2Zn20_{20} and Y(Fex_xCo1−x_{1-x})2_2Zn20_{20} which clearly reveal the effect of 3d band filling on their magnetic properties.Comment: 32 pages, 28 figure

    Possible Heavy Fermion State of the Caged Cubic Compound NdV 2

    No full text

    Automation of a rotating compression vacuum gauge

    No full text
    • …
    corecore