105 research outputs found

    The Closest Damped Lyman Alpha System

    Full text link
    A difficulty of studying damped Lyman alpha systems is that they are distant, so one knows little about the interstellar medium of the galaxy. Here we report upon a damped Lyman alpha system in the nearby galaxy NGC 4203, which is so close (v_helio = 1117 km/s) and bright (B_o = 11.62) that its HI disk has been mapped. The absorption lines are detected against Ton 1480, which lies only 1.9' (12 h_50 kpc) from the center of NGC 4203. Observations were obtained with the Faint Object Spectrograph on HST (G270H grating) over the 2222-3277 Angstrom region with 200 km/s resolution. Low ionization lines of Fe, Mn, and Mg were detected, leading to metallicities of -2.29, -2.4, which are typical of other damped Lyman alpha systems, but well below the stellar metallicity of this type of galaxy. Most notably, the velocity of the lines is 1160 +- 10 km/s, which is identical to the HI rotational velocity of 1170 km/s at that location in NGC 4203, supporting the view that these absorption line systems can be associated with the rotating disks of galaxies. In addition, the line widths of the Mg lines give an upper limit to the velocity dispersion of 167 km/s, to the 99% confidence level.Comment: 4 pages LaTeX, including 1 figure and 1 table, uses emulateapj.sty. Accepted for publication by Astrophysical Journal Letter

    DDO 88: A Galaxy-Sized Hole in the Interstellar Medium

    Full text link
    We present an HI and optical study of the gas-rich dwarf irregular galaxy DDO 88. Although DDO 88's global optical and HI parameters are normal for its morphological type, it hosts a large (3 kpc diameter) and unusually complete ring of enhanced HI emission. The gas ring is located at approximately one-third of the total HI radius and one-half the optically-defined Holmberg radius, and contains 30% of the total HI of the galaxy. The ring surrounds a central depression in the HI distribution, so it may be a shell formed by a starburst episode. However, the UBV colors in the HI hole are not bluer than the rest of the galaxy as would be expected if an unusual star-forming event had taken place there recently, but there is an old (~1-3 Gyr), red cluster near the center of the hole that is massive enough to have produced the hole in the HI. An age estimate for the ring, however, is uncertain because it is not observed to be expanding. An expansion model produces a lower estimate of 0.5 Gyr, but the presence of faint star formation regions associated with the ring indicate a much younger age. We also estimate that the ring could have dispersed by now if it is older than 0.5 Gyr. This implies that the ring is younger than 0.5 Gyr. A younger age would indicate that the red cluster did not produce the hole and ring. If this ring and the depression in the gas which it surrounds were not formed by stellar winds and supernovae, this would indicate that some other, currently unidentified, mechanism is operating.Comment: 44 pages; 16 figures. To appear in AJ, January 2005. Available from ftp.lowell.edu, cd pub/dah/papers/d88 and http://www.fiu.edu/~simpsonc/d8

    A Uniform Analysis of the Ly-alpha Forest at z=0 - 5: V. The extragalactic ionizing background at low redshift

    Full text link
    In Paper III of our series "A Uniform Analysis of the Ly-alpha forest at z=0 - 5", we presented a set of 270 quasar spectra from the archives of the Faint Object Spectrograph on the Hubble Space Telescope. A total of 151 of these spectra, yielding 906 lines, are suitable for using the proximity effect signature to measure J(\nu_0), the mean intensity of the hydrogen-ionizing background radiation field, at low redshift. Using a maximum likelihood technique and the best estimates possible for each QSO's Lyman limit flux and systemic redshift, we find J(\nu_0)= 7.6^+9.4_-3.0 x 10^-23 ergs s^-1 cm^-2 Hz^-1 sr^-1 at at 0.03 < z < 1.67. This is in good agreement with the mean intensity expected from models of the background which incorporate only the known quasar population. When the sample is divided into two subsamples, consisting of lines with z 1, the values of J(\nu_0) found are 6.5^+38._-1.6 x 10^-23 ergs s^-1 cm^-2 Hz^-1 sr^-1, and 1.0^+3.8_-0.2 x 10^-22 ergs s^-1 cm^-2 Hz^-1 sr^-1, respectively, indicating that the mean intensity of the background is evolving over the redshift range of this data set. Relaxing the assumption that the spectral shapes of the sample spectra and the background are identical, the best fit HI photoionization rates are found to be 6.7 x 10^-13 s^-1 for all redshifts, and 1.9 x 10^-13 s^-1 and 1.3 x 10^-12 s^-1 for z 1, respectively. This work confirms that the evolution of the number density of Ly-alpha lines is driven by a decrease in the ionizing background from z ~ 2 to z ~ 0 as well as by the formation of structure in the intergalactic medium. (Abridged)Comment: 71 LaTeX pages, 20 encapsulated Postscript figures, Accepted for publication in ApJ, Figure 4 available at http://lithops.as.arizona.edu/~jill/QuasarSpectra/ or http://hea-www.harvard.edu/QEDT/QuasarSpectra

    HST WFPC2 Imaging of Three Low Surface Brightness Dwarf Elliptical Galaxies in the Virgo Cluster

    Get PDF
    [annotated] HST WFPC2 images were taken of three LSB dwarf elliptical galaxies in the Virgo cluster. The intent of the observations was to determine the small scale structure in these enigmatic galaxies, and to attempt to learn something about the nature of their giant branch through the detection of luminosity fluctuations. In two of the three studied galaxies, V7L3 and V1L4, the luminosity fluctuations were unambiguously detected, yielding a density of 2 - 10 red giants/pixel. Using the observed B-V and V-I colors as a constraint, we could find no model that would reproduce the observed fluctuation signal and blue colors if there was a significant population of M-giants in these systems. The third system, V2L8, did not have a detectable fluctuation signal which possibly implies it is not in the Virgo cluster. Interestingly, this system is highly nucleated. Our observations have resolved this nucleus and if V2L8 is in Virgo, then we have discovered what is likely the smallest bulge measured to date, having an effective radius of only 50 pc. This bulge is quite red (as red as giant ellipticals) and its entirely possible that this nucleated dE galaxy, in fact, is a very large galaxy located in the background. As such, it is highly reminiscent of the manner in which Malin-1 was discovered. Finally, we find no evidence for small scale clumping of stars in any of the studied systems at this much improved spatial resolution. This implies these systems are dynamically well-relaxed and that the physical cause of their observed low surface brightnesses is their low density. When imaged at the high spatial resolution of the WFPC2 (~6 pc per pixel), the galaxies are easy to look right through without evening knowing they are present in the very middle of the WFPC2 frame. They appear only as elevated ``sky noise''.Comment: 39 pages, 3 figures, 3 tables. Accepted for publication in AJ The paper, full-sized figures, etc. can also be obtained via http://guernsey.uoregon.edu/~kare

    The disruption of nearby galaxies by the Milky Way

    Full text link
    Interactions between galaxies are common and are an important factor in determining their physical properties such as position along the Hubble sequence and star-formation rate. There are many possible galaxy interaction mechanisms, including merging, ram-pressure stripping, gas compression, gravitational interaction and cluster tides. The relative importance of these mechanisms is often not clear, as their strength depends on poorly known parameters such as the density, extent and nature of the massive dark halos that surround galaxies. A nearby example of a galaxy interaction where the mechanism is controversial is that between our own Galaxy and two of its neighbours -- the Large and Small Magellanic Clouds. Here we present the first results of a new HI survey which provides a spectacular view of this interaction. In addition to the previously known Magellanic Stream, which trails 100 degrees behind the Clouds, the new data reveal a counter-stream which lies in the opposite direction and leads the motion of the Clouds. This result supports the gravitational model in which leading and trailing streams are tidally torn from the body of the Magellanic Clouds.Comment: 17 pages with 5 figures in gif format, scheduled for publication in the August 20th, 1998 issue of Natur

    Molecular Hydrogen in the Ring Nebula: Clumpy Photodissociation Regions

    Get PDF
    Article DOI: 10.1086/345911 Article Stable URL: http://www.jstor.org/stable/10.1086/345911We present a 0 .65 resolution H2 1-0 S(1) 2.122 mm image of the Ring Nebula (NGC 6720), which was taken with the Near Infrared Imager at the WIYN 3.5 m telescope on Kitt Peak. The high resolution of the H2 observation is sufficient to reveal the finer structure of the molecular material in this nebula. The morphology of the molecular emission is compared to that of the ionized emission from the Ring Nebula as seen by the Hubble Space Telescope (HST; He ii, [O iii], and [N ii]), and it is clear that the dark clumps seen by HST match the locations of clumpy H2 emission, suggesting that these clumps are similar to the cometary knots seen in the Helix Nebula. As with the Helix, the clumpy H2 emission from the main ring of the Ring Nebula is contained within the optically bright ionized nebula, implying that the molecular gas is shielded inside dense condensations. Comparison of the observed H2 average surface brightnesses for the Ring Nebula [(1.5 ergs cm 2 s 1 sr 1] with time-dependent models of the expected H2 0.5)#10 4 emission from planetary nebulae (PNe) shows that it is consistent with H2 excitation in photodissociation regions (PDRs), confirming previous suggestions. Comparison of the Ring Nebula H2 emission with a younger PN, NGC 2346, and an older PN, the Helix Nebula, suggests an evolution in H2 surface brightness consistent with the time-dependent PDR models. Moreover, the knots of molecular gas appear to become more isolated as the PN evolves, consistent with optical studies of knots in PNe.A. K. S. was supported by NASA JPL 961504 and NASA STI 7898.02-96A. A. K. S. and M. M. were supported by NSF CAREER award AST 97-33697

    Evolutionary Status of Dwarf ``Transition'' Galaxies

    Get PDF
    We present deep B, R and Halpha imaging of 3 dwarf galaxies: NGC3377A, NGC4286, and IC3475. Based on previous broadband imaging and HI studies, these mixed-morphology galaxies were proposed by Sandage & Hoffman (1991) to be, respectively, a gas-rich low surface brightness Im dwarf, a nucleated dwarf that has lost most of its gas and is in transition from Im to dS0,N, and the prototypical example of a gas-poor ``huge low surface brightness'' early-type galaxy. From the combination of our broadband and Halpha imaging with the published information on the neutral gas content of these three galaxies, we find that (1) NGC3377A is a dwarf spiral; (2) NGC3377A and NGC4286 have comparable amounts of ongoing star formation, as indicated by their Halpha emission, while IC3475 has no detected HII regions to a very low limit; (3) the global star formation rates are at least a factor of 20 below that of 30 Doradus for NGC3377A and NGC4286; (4) while the amount of star formation is comparable, the distribution of star forming regions is very different between NGC3377A and NGC4286; (5) given their current star formation rates and gas contents, both NGC3377A and NGC4286 can continue to form stars for more than a Hubble time; (6) both NGC3377A and NGC4286 have integrated total B-R colors that are redder than the integrated total B-R color for IC3475, and thus it is unlikely that either galaxy will ever evolve into an IC3475 counterpart; and (7) IC3475 is too blue to be a dE. We thus conclude that we have not identified potential precursors to galaxies such as IC3475, and unless signifcant changes occur in the star formation rates, neither NGC3377A nor NGC4286 will evolve into a dwarf elliptical or dwarf spheroidal within a Hubble time.Comment: 34 pages, 6 jpg figures, 3 postscript figures, and 4 tables, uses AASTeX, ApJ, in pres

    Intergalactic HII Regions Discovered in SINGG

    Get PDF
    A number of very small isolated HII regions have been discovered at projected distances up to 30 kpc from their nearest galaxy. These HII regions appear as tiny emission line objects in narrow band images obtained by the NOAO Survey for Ionization in Neutral Gas Galaxies (SINGG). We present spectroscopic confirmation of four isolated HII regions in two systems, both systems have tidal HI features. The results are consistent with stars forming in interactive debris due to cloud-cloud collisions. The H-alpha luminosities of the isolated HII regions are equivalent to the ionizing flux of only a few O stars each. They are most likely ionized by stars formed in situ, and represent atypical star formation in the low density environment of the outer parts of galaxies. A small but finite intergalactic star formation rate will enrich and ionize the surrounding medium. In one system, NGC 1533, we calculate a star formation rate of 1.5e-3 msun/yr, resulting in a metal enrichment of ~1e-3 solar for the continuous formation of stars. Such systems may have been more common in the past and a similar enrichment level is measured for the `metallicity floor' in damped Lyman-alpha absorption systems.Comment: accepted for publication in the Astronomical Journal, 19 pages, including 5 figures, some low resolution. Paper with high resolution images can be downloaded from http://astro.ph.unimelb.edu.au/~eryan/publications/eldots.ps.g
    corecore