1,706 research outputs found

    Smart Asset Management for Electric Utilities: Big Data and Future

    Full text link
    This paper discusses about future challenges in terms of big data and new technologies. Utilities have been collecting data in large amounts but they are hardly utilized because they are huge in amount and also there is uncertainty associated with it. Condition monitoring of assets collects large amounts of data during daily operations. The question arises "How to extract information from large chunk of data?" The concept of "rich data and poor information" is being challenged by big data analytics with advent of machine learning techniques. Along with technological advancements like Internet of Things (IoT), big data analytics will play an important role for electric utilities. In this paper, challenges are answered by pathways and guidelines to make the current asset management practices smarter for the future.Comment: 13 pages, 3 figures, Proceedings of 12th World Congress on Engineering Asset Management (WCEAM) 201

    75As NMR local probe study of magnetism in (Eu1-xKx)Fe2As2

    Full text link
    75As NMR measurements were performed as a function of temperature and doping in (Eu1-xKx)Fe2As2 (x=0,0.38,0.5,0.7) samples. The large Eu2+ moments and their fluctuations are found to dominate the 75As NMR properties. The 75As nuclei close to the Eu2+ moments likely have a very short spin-spin relaxation time (T2) and are wiped out of our measurement window. The 75As nuclei relatively far from Eu2+ moments are probed in this study. Increasing the Eu content progressively decreases the signal intensity with no signal found for the full-Eu sample (x=0). The large 75As NMR linewidth arises from an inhomogeneous magnetic environment around them. The spin lattice relaxation rate (1/T1) for x=0.5 and 0.7 samples is nearly independent of temperature above 100K and results from a coupling to paramagnetic fluctuations of the Eu2+ moments. The behavior of 1/T1 at lower temperatures has contributions from the antiferromagnetic fluctuations of the Eu2+ moments as also the fluctuations intrinsic to the FeAs planes and from superconductivity.Comment: 6 pages, 6 figures (to appear in EPJB

    Magnetism and superconductivity in Eu0.2Sr0.8(Fe0.86Co0.14)2As2 probed by 75As NMR

    Full text link
    We report bulk superconductivity (SC) in Eu0.2_{0.2}Sr0.8_{0.8}(Fe0.86_{0.86}Co0.14_{0.14})2_{2}As2_{2} single crystals by means of electrical resistivity, magnetic susceptibility, and specific heat measurements with TTc_{\mathrm{c}} \simeq 20 K with an antiferromagnetic (AFM) ordering of Eu2+^{2+} moments at TTN_{\mathrm{N}} \simeq 2.0 K in zero field. 75^{75}As NMR experiments have been performed in the two external field directions (Hab\|ab) and (Hc\|c). 75^{75}As-NMR spectra are analyzed in terms of first order quadrupolar interaction. Spin-lattice relaxation rates (1/T1T_{1}) follow a T3T^{3} law in the temperature range 4.2-15 K. There is no signature of Hebel-Slichter coherence peak just below the SC transition indicating a non s-wave or s±_{\pm} type of superconductivity. The increase of 1/T1TT_{1}T with lowering the temperature in the range 160-18 K following CT+θ\frac{C}{T+\theta} law reflecting 2D AFM spin fluctuations

    Optimally Convex Controller and Model Reduction for a Dynamic System

    Get PDF
    This paper presents analysis and design of a family of controllers based on numerical convex optimization for an aircraft pitch control system. A design method is proposed here to solve control system design problems in which a set of multiple closed loop performance specifications are simultaneously satisfied. The transfer matrix of the system is determined through the convex combination of the transfer matrices of the plant and the controllers. The present system with optimal convex controller has been tested for stability using Kharitonov’s Stability Criteria. The simulation deals here withthe problem of pitch control system of a BRAVO fighter aircraft which results in higher order close loop transfer function. So the order of the higher order transfer function is reduced to minimize the complexity of the system

    Magnetic susceptibility and heat capacity of a novel antiferromagnet: LiNi2P3O10 and the effect of doping

    Full text link
    We report the synthesis, x-ray diffraction, magnetic susceptibility and specific heat measurements on polycrystalline samples of undoped LiNi2P3O10 and samples with non-magnetic impurity (Zn2+, S = 0) and magnetic impurity (Cu2+, S = 1/2) at the Ni site. The magnetic susceptibility data show a broad maximum at around 10 K and a small anomaly at about 7 K in the undoped sample.There is a lambda-like anomaly in the specific heat at 7 K, possibly due to the onset of antiferromagnetic ordering in the system. The magnetic entropy change at the ordering temperature is close to the value corresponding to Rln(2S+1) expected for an S = 1 system. The temperature corresponding to the broad maximum and the ordering temperature both decrease on Zn and Cu substitutions and also in applied magnetic fields

    Field tuned critical fluctuations in YFe2Al10: Evidence from magnetization, 27Al (NMR, NQR) investigations

    Full text link
    We report magnetization, specific heat, and NMR investigations on YFe2Al10 over a wide range in temperature and magnetic field and zero field (NQR) measurements. Magnetic susceptibility, specific heat and spin-lattice relaxation rate divided by T (1/T1T) follow a weak power law (T^-0.4) temperature dependence, which is a signature of critical fluctuations of Fe moments. The value of the Sommerfeld-Wilson ratio and linear relation between 1/T1T and chi(T) suggest the existence of ferromagnetic correlations in this system. No magnetic ordering down to 50 mK in Cp(T) and the unusual temperature and field scaling of the bulk and NMR data are associated with a magnetic instability which drives the system to quantum criticality. The magnetic properties of the system are tuned by field wherein ferromagnetic fluctuations are suppressed and a crossover from quantum critical to FL behavior is observed with increasing magnetic field

    Spin liquid behaviour in Jeff=1/2 triangular lattice Ba3IrTi2O9

    Full text link
    Ba3IrTi2O9 crystallizes in a hexagonal structure consisting of a layered triangular arrangement of Ir4+ (Jeff=1/2). Magnetic susceptibility and heat capacity data show no magnetic ordering down to 0.35K inspite of a strong magnetic coupling as evidenced by a large Curie-Weiss temperature=-130K. The magnetic heat capacity follows a power law at low temperature. Our measurements suggest that Ba3IrTi2O9 is a 5d, Ir-based (Jeff=1/2), quantum spin liquid on a 2D triangular lattice.Comment: 10 pages including supplemental material, to be published in Phys. Rev. B (Rapid Comm.

    Contiguous 3d and 4f magnetism: towards strongly correlated 3d electrons in YbFe2Al10

    Full text link
    We present magnetization, specific heat, and 27Al NMR investigations on YbFe2Al10 over a wide range in temperature and magnetic field. The magnetic susceptibility at low temperatures is strongly enhanced at weak magnetic fields, accompanied by a ln(T0/T) divergence of the low-T specific heat coefficient in zero field, which indicates a ground state of correlated electrons. From our hard X-ray photo emission spectroscopy (HAXPES) study, the Yb valence at 50 K is evaluated to be 2.38. The system displays valence fluctuating behavior in the low to intermediate temperature range, whereas above 400 K, Yb3+ carries a full and stable moment, and Fe carries a moment of about 3.1 mB. The enhanced value of the Sommerfeld Wilson ratio and the dynamic scaling of spin-lattice relaxation rate divided by T [27(1/T1T)] with static susceptibility suggests admixed ferromagnetic correlations. 27(1/T1T) simultaneously tracks the valence fluctuations from the 4f -Yb ions in the high temperature range and field dependent antiferromagnetic correlations among partially Kondo screened Fe 3d moments at low temperature, the latter evolve out of an Yb 4f admixed conduction band.Comment: To appear in Phys. Rev. Let
    corecore