10,368 research outputs found

    Some new class of Chaplygin Wormholes

    Full text link
    Some new class of Chaplygin wormholes are investigated in the framework of a Chaplygin gas with equation of state p=Aρ p = - \frac{A}{\rho}, A>0A>0. Since empty spacetime (p=ρ=0 p = \rho = 0 ) does not follow Chaplygin gas, so the interior Chaplygin wormhole solutions will never asymptotically flat. For this reason, we have to match our interior wormhole solution with an exterior vacuum solution i.e. Schwarzschild solution at some junction interface, say r=a r = a . We also discuss the total amount of matter characterized by Chaplygin gas that supplies fuel to construct a wormhole.Comment: 14 pages, 12 figures, Accepted for publication in Mod.Phys.Lett.

    Ab initio lattice dynamics and electron-phonon coupling of Bi(111)

    Get PDF
    We present a comprehensive ab initio study of structural, electronic, lattice dynamical and electron-phonon coupling properties of the Bi(111) surface within density functional perturbation theory. Relativistic corrections due to spin-orbit coupling are consistently taken into account. As calculations are carried out in a periodic slab geometry, special attention is given to the convergence with respect to the slab thickness. Although the electronic structure of Bi(111) thin films varies significantly with thickness, we found that the lattice dynamics of Bi(111) is quite robust and appears converged already for slabs as thin as 6 bilayers. Changes of interatomic couplings are confined mostly to the first two bilayers, resulting in super-bulk modes with frequencies higher than the optic bulk spectrum, and in an enhanced density of states at lower frequencies for atoms in the first bilayer. Electronic states of the surface band related to the outer part of the hole Fermi surfaces exhibit a moderate electron-phonon coupling of about 0.45, which is larger than the coupling constant of bulk Bi. States at the inner part of the hole surface as well as those forming the electron pocket close to the zone center show much increased couplings due to transitions into bulk projected states near Gamma_bar. For these cases, the state dependent Eliashberg functions exhibit pronounced peaks at low energy and strongly deviate in shape from a Debye-like spectrum, indicating that an extraction of the coupling strength from measured electronic self-energies based on this simple model is likely to fail.Comment: 30 pages, 11 figure

    Oral cancer secretome: Identification of cancer-associated proteins

    Get PDF
    This study aims to identify cancer-associated proteins in the secretome of oral cancer cell lines. We have successfully established four primary cell cultures of normal cells with a limited lifespan without human telomerase reverse transcriptase (hTERT) immortalization. The secretome of these primary cell cultures were compared with that of oral cancer cell lines using 2DE. Thirty five protein spots were found to have changed in abundance. Unambiguous identification of these proteins was achieved by MALDI TOF/TOF. In silico analysis predicted that 24 of these proteins were secreted via classical or nonclassical mechanisms. The mRNA expression of six genes was found to correlate with the corresponding protein abundance. Ingenuity Pathway Analysis (IPA) core analysis revealed that the identified proteins were relevant in, and related to, cancer development with likely involvements in tumor growth, metastasis, hyperproliferation, tumorigenesis, neoplasia, hyperplasia, and cell transformation. In conclusion, we have demonstrated that a comparative study of the secretome of cancer versus normal cell lines can be used to identify cancer-associated proteins.Article Link: http://onlinelibrary.wiley.com/doi/10.1002/elps.201300126/abstrac

    The q-harmonic oscillator and an analog of the Charlier polynomials

    Full text link
    A model of a q-harmonic oscillator based on q-Charlier polynomials of Al-Salam and Carlitz is discussed. Simple explicit realization of q-creation and q-annihilation operators, q-coherent states and an analog of the Fourier transformation are found. A connection of the kernel of this transform with biorthogonal rational functions is observed

    Enhancing the Stretchability of Two-Dimensional Materials through Kirigami: A Molecular Dynamics Study on Tungsten Disulfide

    Full text link
    In recent years, the 'kirigami' technique has gained significant attention for creating meta-structures and meta-materials with exceptional characteristics, such as unprecedented stretchability. These properties, not typically inherent in the original materials or structures, present new opportunities for applications in stretchable electronics and photovoltaics. However, despite its scientific and practical significance, the application of kirigami patterning on a monolayer of tungsten disulfide (WS2), a van der Waals material with exceptional mechanical, electronic, and optical properties, has remained unexplored. This study utilizes molecular dynamics (MD) simulations to investigate the mechanical properties of monolayer WS2 with rectangular kirigami cuts. We find that, under tensile loading, the WS2 based kirigami structure exhibits a notable increase in tensile strain and a decrease in strength, thus demonstrating the effectiveness of the kirigami cutting technique in enhancing the stretchability of monolayer WS2. Additionally, increasing the overlap ratio enhances the stretchability of the structure, allowing for tailored high strength or high strain requirements. Furthermore, our observations reveal that increasing the density of cuts and reducing the length-to-width ratio of the kirigami nanosheet further improve the fracture strain, thereby enhancing the overall stretchability of the proposed kirigami patterned structure of WS2.Comment: 19 pages, 5 figure

    Low-Cost Aquifer Storage and Recovery: Implications for Improving Drinking Water Access for Rural Communities in Coastal Bangladesh

    Get PDF
    Fresh water resources are scarce in rural communities in the southern deltaic plains of Bangladesh where both shallow and deep groundwater is frequently brackish, and fresh water ponds have been increasingly salinized by inundation during storm surges and brackish-water aquaculture. Low-cost aquifer storage and recovery (ASR) schemes were constructed at 13 villages in three coastal districts by developing storage in shallow confined fine to medium sand aquifers overlain by variable thicknesses of silt and clay. A typical ASR scheme consisted of a double-chambered graded sand filtration tank with a volume of 19.5  m3 that feeds filtered pond water to four to six large diameter (d=30.5 or 56 cm) infiltration wells through PVC pipes fitted with stop valves and flow meters. The infiltration wells were completed at 18–31 m below ground and filled with well-sorted gravel capped with a thin layer of fine sand that acts as a second stage filter. Infiltration rates at 13 sites averaged 3  m3/day (range: 3–6  m3/day) over one year of operation. At 11 sites where water was abstracted, the recovery rate ranged from 5 to 40%. The source pond source water frequently had turbidity values of ≥100  NTU. After sand filtration, the turbidity is typically 5 NTU. Despite this, clogging management involving frequent (monthly to weekly) manual washing to remove fine materials deposited in the sand filtration tank and the infiltration wells is found to be necessary and effective, with post-manual-washing operational infiltration rates restored to annual average values. E. coli counts in recovered water are greatly reduced compared to raw pond water, although E. coli is still detected in about half of the samples. Arsenic in recovered water was detected to be at level of > 100  μg/L repeatedly at three sites, suggesting that As risks must be carefully managed and require further investigation

    Bioactivity and In Silico Studies of Isoquinoline and Related Alkaloids as Promising Antiviral Agents: An Insight

    Get PDF
    Viruses are widely recognized as the primary cause of infectious diseases around the world. The ongoing global pandemic due to the emergence of SARS-CoV-2 further added fuel to the fire. The development of therapeutics becomes very difficult as viruses can mutate their genome to become more complex and resistant. Medicinal plants and phytocompounds could be alternative options. Isoquinoline and their related alkaloids are naturally occurring compounds that interfere with multiple pathways including nuclear factor-κB, mitogen-activated protein kinase/extracellular-signal-regulated kinase, and inhibition of Ca²⁺-mediated fusion. These pathways play a crucial role in viral replication. Thus, the major goal of this study is to comprehend the function of various isoquinoline and related alkaloids in viral infections by examining their potential mechanisms of action, structure-activity relationships (SAR), in silico (particularly for SARS-CoV-2), in vitro and in vivo studies. The current advancements in isoquinoline and related alkaloids as discussed in the present review could facilitate an in-depth understanding of their role in the drug discovery process

    Free radical activity of industrial fibers: role of iron in oxidative stress and activation of transcription factors.

    Get PDF
    We studied asbestos, vitreous fiber (MMVF10), and refractory ceramic fiber (RCF1) from the Thermal Insulation Manufacturers' Association fiber repository regarding the following: free radical damage to plasmid DNA, iron release, ability to deplete glutathione (GSH), and activate redox-sensitive transcription factors in macrophages. Asbestos had much more free radical activity than any of the man-made vitreous fibers. More Fe3+ was released than Fe2+ and more of both was released at pH 4.5 than at pH 7.2. Release of iron from the different fibers was generally not a good correlate of ability to cause free radical injury to the plasmid DNA. All fiber types caused some degree of oxidative stress, as revealed by depletion of intracellular GSH. Amosite asbestos upregulated nuclear binding of activator protein 1 transcription factor to a greater level than MMVF10 and RCF1; long-fiber amosite was the only fiber to enhance activation of the transcription factor nuclear factor kappa B (NF kappa B). The use of cysteine methyl ester and buthionine sulfoximine to modulate GSH suggested that GSH homeostasis was important in leading to activation of transcription factors. We conclude that the intrinsic free radical activity is the major determinant of transcription factor activation and therefore gene expression in alveolar macrophages. Although this was not related to iron release or ability to deplete macrophage GSH at 4 hr, GSH does play a role in activation of NF kappa B
    corecore