1,406,522 research outputs found

    Polar Codes over Fading Channels with Power and Delay Constraints

    Full text link
    The inherent nature of polar codes being channel specific makes it difficult to use them in a setting where the communication channel changes with time. In particular, to be able to use polar codes in a wireless scenario, varying attenuation due to fading needs to be mitigated. To the best of our knowledge, there has been no comprehensive work in this direction thus far. In this work, a practical scheme involving channel inversion with the knowledge of the channel state at the transmitter, is proposed. An additional practical constraint on the permissible average and peak power is imposed, which in turn makes the channel equivalent to an additive white Gaussian noise (AWGN) channel cascaded with an erasure channel. It is shown that the constructed polar code could be made to achieve the symmetric capacity of this channel. Further, a means to compute the optimal design rate of the polar code for a given power constraint is also discussed.Comment: 6 pages, 6 figure

    Comment on "Effect of growth interruptions on the light emission and indium clustering of InGaN/GaN multiple quantum wells" [Appl. Phys. Lett. 79, 2594 (2001)]

    Get PDF
    This entry is a comment on "Effect of growth interruptions on the light emission and indium clustering

    Heat sealable, flame and abrasion resistant coated fabric

    Get PDF
    Flame retardant, abrasion resistant elastomeric compositions are comprised of thermoplastic polyurethane polymer and flame retarding amounts of a filler selected from decabromodiphenyloxide and antimony oxide in a 3:1 weight ratio, and decabromodiphenyloxide, antimony oxide, and ammonium polyphosphate in a 3:1:3 weight ratio respectively. Coated fabrics employing such elastomeric compositions as coating film are flexible, lightweight, and air impermeable and can be made using heat or dielectric sealing procedures

    Breakdown of counterflow superfluidity in a disordered quantum Hall bilayer

    Get PDF
    We present a theory for the regime of coherent interlayer tunneling in a disordered quantum Hall bilayer at total filling factor one, allowing for the effect of static vortices. We find that the system consists of domains of polarized superfluid phase. Injected currents introduce phase slips between the polarized domains which are pinned by disorder. We present a model of saturated tunneling domains that predicts a critical current for the breakdown of coherent tunneling that is extensive in the system size. This theory is supported by numerical results from a disordered phase model in two dimensions. We also discuss how our picture might be used to interpret experiments in the counterflow geometry and in two-terminal measurements.Comment: 7 pages, 3 figure
    corecore