545 research outputs found

    Open access to sensors

    Get PDF

    Safari:Instrument design of the far-infrared imaging spectrometer for spica

    Get PDF
    The next great leap forward in space-based far-infrared astronomy will be made by the Japanese-led SPICA mission, which is anticipated to be launched late 2020's as the next large astrophysics mission of JAXA, in partnership with ESA and with key European contributions. Filling in the gap between JWST and ALMA, the SPICA mission will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 3m-class telescope, provided by European industry, to realize zodiacal background limited performance, high spatial resolution and large collecting area. Making full advantage of the deeply cooled telescope (&lt;6K), the SAFARI instrument on SPICA is a highly sensitive wide-field imaging photometer and spectrometer operating in the 34-210 μm wavelength range. Utilizing Nyquist-sampled focal-plane arrays of very sensitive Transition Edge Sensors (TES), SAFARI will offer a photometric imaging (R ≈ 2), and a low (R = 100) and medium resolution (R = 2000 at 100 μm) imaging spectroscopy mode in three photometric bands within a 2'x2' instantaneous FoV by means of a cryogenic Mach-Zehnder Fourier Transform Spectrometer. In this paper we will provide an overview of the SAFARI instrument design and system architecture. We will describe the reference design of the SAFARI focal- plane unit, the implementation of the various optical instrument functions designed around the central large-stroke FTS system, the photometric band definition and out-of-band filtering by quasioptical elements, the control of straylight, diffraction and thermal emission in the long-wavelength limit, and how we interface to the large-format FPA arrays at one end and the SPICA telescope assembly at the other end. We will briefly discuss the key performance drivers with special emphasis on the optical techniques adopted to overcome issues related to very low background operation of SAFARI. A summary and discussion of the expected instrument performance and an overview of the astronomical capabilities finally conclude the paper.</p

    Role of immediate early genes in the development of salivary gland organoids in polyisocyanopeptide hydrogels

    Get PDF
    Human salivary gland organoids have opened tremendous possibilities for regenerative medicine in patients undergoing radiotherapy for the treatment of head and neck cancer. However, their clinical translation is greatly limited by the current use of Matrigel for organoid derivation and expansion. Here, we envisage that the use of a fully, synthetic hydrogel based on the oligo (-ethylene glycol) functionalized polymer polyisocyanopeptides (PICs) can provide an environment suitable for the generation and expansion of salivary gland organoids (SGOs) after optimization of PIC polymer properties. We demonstrate that PIC hydrogels decorated with the cell-binding peptide RGD allow SGO formation from salivary gland (SG)-derived stem cells. This self-renewal potential is preserved for only 4 passages. It was found that SGOs differentiated prematurely in PIC hydrogels affecting their self-renewal capacity. Similarly, SGOs show decreased expression of immediate early genes (IEGs) after culture in PIC hydrogels. Activation of multiple signalling pathways involved in IEG expression by β-adrenergic agonist isoproterenol, led to increased stem cell self-renewal capacity as measured by organoid forming efficiency (OFE). These results indicate that PIC hydrogels are promising 3D matrices for SGOs, with the option to be used clinically, after further optimization of the hydrogel and culture conditions.</p

    Role of immediate early genes in the development of salivary gland organoids in polyisocyanopeptide hydrogels

    Get PDF
    Human salivary gland organoids have opened tremendous possibilities for regenerative medicine in patients undergoing radiotherapy for the treatment of head and neck cancer. However, their clinical translation is greatly limited by the current use of Matrigel for organoid derivation and expansion. Here, we envisage that the use of a fully, synthetic hydrogel based on the oligo (-ethylene glycol) functionalized polymer polyisocyanopeptides (PICs) can provide an environment suitable for the generation and expansion of salivary gland organoids (SGOs) after optimization of PIC polymer properties. We demonstrate that PIC hydrogels decorated with the cell-binding peptide RGD allow SGO formation from salivary gland (SG)-derived stem cells. This self-renewal potential is preserved for only 4 passages. It was found that SGOs differentiated prematurely in PIC hydrogels affecting their self-renewal capacity. Similarly, SGOs show decreased expression of immediate early genes (IEGs) after culture in PIC hydrogels. Activation of multiple signalling pathways involved in IEG expression by β-adrenergic agonist isoproterenol, led to increased stem cell self-renewal capacity as measured by organoid forming efficiency (OFE). These results indicate that PIC hydrogels are promising 3D matrices for SGOs, with the option to be used clinically, after further optimization of the hydrogel and culture conditions.</p

    Role of immediate early genes in the development of salivary gland organoids in polyisocyanopeptide hydrogels

    Get PDF
    Human salivary gland organoids have opened tremendous possibilities for regenerative medicine in patients undergoing radiotherapy for the treatment of head and neck cancer. However, their clinical translation is greatly limited by the current use of Matrigel for organoid derivation and expansion. Here, we envisage that the use of a fully, synthetic hydrogel based on the oligo (-ethylene glycol) functionalized polymer polyisocyanopeptides (PICs) can provide an environment suitable for the generation and expansion of salivary gland organoids (SGOs) after optimization of PIC polymer properties. We demonstrate that PIC hydrogels decorated with the cell-binding peptide RGD allow SGO formation from salivary gland (SG)-derived stem cells. This self-renewal potential is preserved for only 4 passages. It was found that SGOs differentiated prematurely in PIC hydrogels affecting their self-renewal capacity. Similarly, SGOs show decreased expression of immediate early genes (IEGs) after culture in PIC hydrogels. Activation of multiple signalling pathways involved in IEG expression by β-adrenergic agonist isoproterenol, led to increased stem cell self-renewal capacity as measured by organoid forming efficiency (OFE). These results indicate that PIC hydrogels are promising 3D matrices for SGOs, with the option to be used clinically, after further optimization of the hydrogel and culture conditions.</p

    Role of immediate early genes in the development of salivary gland organoids in polyisocyanopeptide hydrogels

    Get PDF
    Human salivary gland organoids have opened tremendous possibilities for regenerative medicine in patients undergoing radiotherapy for the treatment of head and neck cancer. However, their clinical translation is greatly limited by the current use of Matrigel for organoid derivation and expansion. Here, we envisage that the use of a fully, synthetic hydrogel based on the oligo (-ethylene glycol) functionalized polymer polyisocyanopeptides (PICs) can provide an environment suitable for the generation and expansion of salivary gland organoids (SGOs) after optimization of PIC polymer properties. We demonstrate that PIC hydrogels decorated with the cell-binding peptide RGD allow SGO formation from salivary gland (SG)-derived stem cells. This self-renewal potential is preserved for only 4 passages. It was found that SGOs differentiated prematurely in PIC hydrogels affecting their self-renewal capacity. Similarly, SGOs show decreased expression of immediate early genes (IEGs) after culture in PIC hydrogels. Activation of multiple signalling pathways involved in IEG expression by β-adrenergic agonist isoproterenol, led to increased stem cell self-renewal capacity as measured by organoid forming efficiency (OFE). These results indicate that PIC hydrogels are promising 3D matrices for SGOs, with the option to be used clinically, after further optimization of the hydrogel and culture conditions.</p

    Role of immediate early genes in the development of salivary gland organoids in polyisocyanopeptide hydrogels

    Get PDF
    Human salivary gland organoids have opened tremendous possibilities for regenerative medicine in patients undergoing radiotherapy for the treatment of head and neck cancer. However, their clinical translation is greatly limited by the current use of Matrigel for organoid derivation and expansion. Here, we envisage that the use of a fully, synthetic hydrogel based on the oligo (-ethylene glycol) functionalized polymer polyisocyanopeptides (PICs) can provide an environment suitable for the generation and expansion of salivary gland organoids (SGOs) after optimization of PIC polymer properties. We demonstrate that PIC hydrogels decorated with the cell-binding peptide RGD allow SGO formation from salivary gland (SG)-derived stem cells. This self-renewal potential is preserved for only 4 passages. It was found that SGOs differentiated prematurely in PIC hydrogels affecting their self-renewal capacity. Similarly, SGOs show decreased expression of immediate early genes (IEGs) after culture in PIC hydrogels. Activation of multiple signalling pathways involved in IEG expression by β-adrenergic agonist isoproterenol, led to increased stem cell self-renewal capacity as measured by organoid forming efficiency (OFE). These results indicate that PIC hydrogels are promising 3D matrices for SGOs, with the option to be used clinically, after further optimization of the hydrogel and culture conditions.</p

    Role of immediate early genes in the development of salivary gland organoids in polyisocyanopeptide hydrogels

    Get PDF
    Human salivary gland organoids have opened tremendous possibilities for regenerative medicine in patients undergoing radiotherapy for the treatment of head and neck cancer. However, their clinical translation is greatly limited by the current use of Matrigel for organoid derivation and expansion. Here, we envisage that the use of a fully, synthetic hydrogel based on the oligo (-ethylene glycol) functionalized polymer polyisocyanopeptides (PICs) can provide an environment suitable for the generation and expansion of salivary gland organoids (SGOs) after optimization of PIC polymer properties. We demonstrate that PIC hydrogels decorated with the cell-binding peptide RGD allow SGO formation from salivary gland (SG)-derived stem cells. This self-renewal potential is preserved for only 4 passages. It was found that SGOs differentiated prematurely in PIC hydrogels affecting their self-renewal capacity. Similarly, SGOs show decreased expression of immediate early genes (IEGs) after culture in PIC hydrogels. Activation of multiple signalling pathways involved in IEG expression by β-adrenergic agonist isoproterenol, led to increased stem cell self-renewal capacity as measured by organoid forming efficiency (OFE). These results indicate that PIC hydrogels are promising 3D matrices for SGOs, with the option to be used clinically, after further optimization of the hydrogel and culture conditions.</p

    Full characterization and analysis of a terahertz heterodyne receiver based on a NbN hot electron bolometer

    Get PDF
    We present a complete experimental characterization of a quasioptical twin-slot antenna coupled small area (1.0×0.15 µm^2) NbN hot electron bolometer (HEB) mixer compatible with currently available solid state tunable local oscillator (LO) sources. The required LO power absorbed in the HEB is analyzed in detail and equals only 25 nW. Due to the small HEB volume and wide antenna bandwidth, an unwanted direct detection effect is observed which decreases the apparent sensitivity. Correcting for this effect results in a receiver noise temperature of 700 K at 1.46 THz. The intermediate frequency (IF) gain bandwidth is 2.3 GHz and the IF noise bandwidth is 4 GHz. The single channel receiver stability is limited to 0.2–0.3 s in a 50 MHz bandwidth
    • …
    corecore