1,201 research outputs found

    Modeling Nonaxisymmetric Bow Shocks: Solution Method and Exact Analytic Solutions

    Get PDF
    A new solution method is presented for steady-state, momentum-conserving, non-axisymmetric bow shocks and colliding winds in the thin-shell limit. This is a generalization of previous formulations to include a density gradient in the pre-shock ambient medium, as well as anisotropy in the pre-shock wind. For cases where the wind is unaccelerated, the formalism yields exact, analytic solutions. Solutions are presented for two bow shock cases: (1) that due to a star moving supersonically with respect to an ambient medium with a density gradient perpendicular to the stellar velocity, and (2) that due to a star with a misaligned, axisymmetric wind moving in a uniform medium. It is also shown under quite general circumstances that the total rate of energy thermalization in the bow shock is independent of the details of the wind asymmetry, including the orientation of the non-axisymmetric driving wind, provided the wind is non-accelerating and point-symmetric. A typical feature of the solutions is that the region near the standoff point is tilted, so that the star does not lie along the bisector of a parabolic fit to the standoff region. The principal use of this work is to infer the origin of bow shock asymmetries, whether due to the wind or ambient medium, or both.Comment: 26 pages and 6 figures accepted to ap

    Anomalous hydrodynamics and "normal" fluids in rapidly rotating BECs

    Full text link
    In rapidly rotating bose systems we show that there is a region of anomalous hydrodynamics whilst the system is still condensed, which coincides with the mean field quantum Hall regime. An immediate consequence is the absence of a normal fluid in any conventional sense. However, even the superfluid hydrodynamics is not described by conventional Bernoulli and continuity equations. We show there are kinematic constraints which connect spatial variations of density and phase, that the positions of vortices are not the simplest description of the dynamics of such a fluid (despite their utility in describing the instantaneous state of the condensate) and that the most compact description allows solution of some illuminating examples of motion. We demonstrate, inter alia, a very simple relation between vortices and surface waves. We show the surface waves can form a "normal fluid" which absorbs energy and angular momentum from vortex motion in the trap. The time scale of this process is sensitive to the initial configuration of the vortices, which can lead to long-lived vortex patches - perhaps related to those observed at JILA.Comment: 4 pages; 1 sentence and references modifie

    Exact vortex nucleation and cooperative vortex tunneling in dilute BECs

    Full text link
    With the imminent advent of mesoscopic rotating BECs in the lowest Landau level (LLL) regime, we explore LLL vortex nucleation. An exact many-body analysis is presented in a weakly elliptical trap for up to 400 particles. Striking non-mean field features are exposed at filling factors >>1 . Eg near the critical rotation frequency pairs of energy levels approach each other with exponential accuracy. A physical interpretation is provided by requantising a mean field theory, where 1/N plays the role of Planck's constant, revealing two vortices cooperatively tunneling between classically degenerate energy minima. The tunnel splitting variation is described in terms of frequency, particle number and ellipticity.Comment: 4 pages,4 figure

    Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber system

    Get PDF
    The giant fiber system (GFS) is a simple network of neurons that mediates visually elicited escape behavior in Drosophila. The giant fiber (GF), the major component of the system, is a large, descending interneuron that relays visual stimuli to the motoneurons that innervate the tergotrochanteral jump muscle (TTM) and dorsal longitudinal flight muscles (DLMs). Mutations in the neural transcript from the shaking-B locus abolish the behavioral response by disrupting transmission at some electrical synapses in the GFS. This study focuses on the role of the gene in the development of the synaptic connections. Using an enhancer-trap line that expresses lacZ in the GFs, we show that the neurons develop during the first 30 hr of metamorphosis. Within the next 15 hr, they begin to form electrical synapses, as indicated by the transfer of intracellularly injected Lucifer yellow. The GFs dye-couple to the TTM motoneuron between 30 and 45 hr of metamorphosis, to the peripherally synapsing interneuron that drives the DLM motoneurons at approximately 48 hr, and to giant commissural interneurons in the brain at approximately 55 hr. Immunocytochemistry with shaking-B peptide antisera demonstrates that the expression of shaking-B protein in the region of GFS synapses coincides temporally with the onset of synaptogenesis; expression persists thereafter. The mutation shak-B2, which eliminates protein expression, prevents the establishment of dye coupling shaking-B, therefore, is essential for the assembly and/or maintenance of functional gap junctions at electrical synapses in the GFS

    Energy cost associated with vortex crossing in superconductors

    Full text link
    Starting from the Ginzburg-Landau free energy of a type II superconductor in a magnetic field we estimate the energy associated with two vortices crossing. The calculations are performed by assuming that we are in a part of the phase diagram where the lowest Landau level approximation is valid. We consider only two vortices but with two markedly different sets of boundary conditions: on a sphere and on a plane with quasi-periodic boundary conditions. We find that the answers are very similar suggesting that the energy is localised to the crossing point. The crossing energy is found to be field and temperature dependent -- with a value at the experimentally measured melting line of U×7.5kTm1.16/cL2U_\times \simeq 7.5 k T_m \simeq 1.16/c_L^2, where cLc_L is the Lindemann melting criterion parameter. The crossing energy is then used with an extension of the Marchetti, Nelson and Cates hydrodynamic theory to suggest an explanation of the recent transport experiments of Safar {{\em et al.}\ }.Comment: 15 pages, RevTex v3.0, followed by 5 postscript figure

    Eta-Helium Quasi-Bound States

    Full text link
    The cross section and tensor analysing power t_20 of the d\vec{d}->eta 4He reaction have been measured at six c.m. momenta, 10 < p(eta) < 90 MeV/c. The threshold value of t_20 is consistent with 1/\sqrt{2}, which follows from parity conservation and Bose symmetry. The much slower momentum variation observed for the reaction amplitude, as compared to that for the analogous pd->eta 3He case, suggests strongly the existence of a quasi-bound state in the eta-4He system and optical model fits indicate that this probably also the case for eta-3He.Comment: LaTeX, uses elsart.sty, 10 pages, 3 Postscript figures, Submitted to Physics Letters

    Condensation of `composite bosons' in a rotating BEC

    Full text link
    We provide evidence for several novel phases in the dilute limit of rotating BECs. By exact calculation of wavefunctions and energies for small numbers of particles, we show that the states near integer angular momentum per particle are best considered condensates of composite entities, involving vortices and atoms. We are led to this result by explicit comparison with a description purely in terms of vortices. Several parallels with the fractional quantum Hall effect emerge, including the presence of the Pfaffian state.Comment: 4 pages, Latex, 3 figure

    Spin vectors in the Koronis family: V. Resolving the ambiguous rotation period of (3032) Evans

    Full text link
    A sidereal rotation counting approach is demonstrated by resolving an ambiguity in the synodic rotation period of Koronis family member (3032) Evans, whose rotation lightcurves' features did not easily distinguish between doubly- and quadruply-periodic. It confirms that Evans's spin rate does not exceed the rubble-pile spin barrier and thus presents no inconsistency with being a ~14-km reaccumulated object. The full spin vector solution for Evans is comparable to those for the known prograde low-obliquity comparably-fast rotators in the Koronis family, consistent with having been spun up by YORP thermal radiation torques.Comment: 8 pages, 6 figures, accepted for publication in Icaru

    Ground-State Properties of a Rotating Bose-Einstein Condensate with Attractive Interaction

    Full text link
    The ground state of a rotating Bose-Einstein condensate with attractive interaction in a quasi-one-dimensional torus is studied in terms of the ratio γ\gamma of the mean-field interaction energy per particle to the single-particle energy-level spacing. The plateaus of quantized circulation are found to appear if and only if γ<1\gamma<1 with the lengths of the plateaus reduced due to hybridization of the condensate over different angular-momentum states.Comment: 4 pages, 2 figures, Accepted for publication in Physical Reveiw Letter
    corecore