310 research outputs found

    Field quality in the twin aperture D2 dipoles for LHC under asymmetric excitation

    Get PDF
    Twin aperture D2 magnets are one of the several types of dipoles to be built by BNL for the interaction regions of LHC. To minimize the number of dipole correctors required in the interaction regions, D2 will also be used as part of the steering system. Consequently, the operating fields in the two apertures may differ by up to ~10at 7 TeV operation and ~33at injection in order to compensate for the strengths of the correctors that would otherwise be required. Such asymmetric excitation of the two apertures may induce undesirable field harmonics. The saturation behavior of various harmonics is studied using POISSON and OPERA-2D. It is shown that the changes in harmonics resulting from the anticipated asymmetry are within tolerable limits. (2 refs)

    Cored Rutherford cables for the GSI fast ramping synchrotron

    Get PDF
    The new heavy ion synchrotron facility proposed by GSI will have two superconducting magnet rings in the same tunnel, with rigidities of 200 T/spl middot/m and 100 T/spl middot/m. Fast ramp times are needed, which can cause significant problems for the magnets, particularly in the areas of ac loss and field distortion. This paper discusses the 200 T/spl middot/m ring, which will use Cos/spl theta/ magnets based on the RHIC dipole design. We discuss the reasons for choosing Rutherford cable with a resistive core and report loss measurements carried out on cable samples. These measurements are compared with theoretical calculations using measured values of inter-strand resistance. Reasonably good agreement is found, but there are indications of nonuniformity in the adjacent resistance R/sub a/. Using these measured parameters, losses and temperature rise are calculated for a RHIC dipole in the operating cycle of the accelerator. A novel insulation scheme designed to promote efficient cooling is described

    Measurements of the Field Quality in Superconducting Dipoles at High Ramp Rates

    Full text link

    RHIC Magnetic Measurements: Definitions and Conventions

    Full text link

    Insertion Magnets

    Full text link
    Chapter 3 in High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report. The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.Comment: 19 pages, Chapter 3 in High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Repor

    Limits on the production of neutral penetrating states in a beam dump

    Full text link
    We present limits on the production of neutral penetrating states produced in 28 GeV proton nucleus collisions. We obtain limits for light, heavy and unstable neutral states. For light stable states our limit [sigma]I[sigma]P-69cm4/nucleon2 is more than a factor of 5.5 better than previous limits. Time of flight techniques are used to study heavy states. We have poor sensitivity to short-lived states.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24349/1/0000616.pd

    Genetic predisposition may not improve prediction of cardiac surgery-associated acute kidney injury

    Get PDF
    Background: The recent integration of genomic data with electronic health records has enabled large scale genomic studies on a variety of perioperative complications, yet genome-wide association studies on acute kidney injury have been limited in size or confounded by composite outcomes. Genome-wide association studies can be leveraged to create a polygenic risk score which can then be integrated with traditional clinical risk factors to better predict postoperative complications, like acute kidney injury.Methods: Using integrated genetic data from two academic biorepositories, we conduct a genome-wide association study on cardiac surgery-associated acute kidney injury. Next, we develop a polygenic risk score and test the predictive utility within regressions controlling for age, gender, principal components, preoperative serum creatinine, and a range of patient, clinical, and procedural risk factors. Finally, we estimate additive variant heritability using genetic mixed models.Results: Among 1,014 qualifying procedures at Vanderbilt University Medical Center and 478 at Michigan Medicine, 348 (34.3%) and 121 (25.3%) developed AKI, respectively. No variants exceeded genome-wide significance (p < 5 × 10−8) threshold, however, six previously unreported variants exceeded the suggestive threshold (p < 1 × 10−6). Notable variants detected include: 1) rs74637005, located in the exonic region of NFU1 and 2) rs17438465, located between EVX1 and HIBADH. We failed to replicate variants from prior unbiased studies of post-surgical acute kidney injury. Polygenic risk was not significantly associated with post-surgical acute kidney injury in any of the models, however, case duration (aOR = 1.002, 95% CI 1.000–1.003, p = 0.013), diabetes mellitus (aOR = 2.025, 95% CI 1.320–3.103, p = 0.001), and valvular disease (aOR = 0.558, 95% CI 0.372–0.835, p = 0.005) were significant in the full model.Conclusion: Polygenic risk score was not significantly associated with cardiac surgery-associated acute kidney injury and acute kidney injury may have a low heritability in this population. These results suggest that susceptibility is only minimally influenced by baseline genetic predisposition and that clinical risk factors, some of which are modifiable, may play a more influential role in predicting this complication. The overall impact of genetics in overall risk for cardiac surgery-associated acute kidney injury may be small compared to clinical risk factors
    • …
    corecore