20,458 research outputs found

    Thermodynamic analysis of dilute ternary systems. 1. The Ag-Au-Sn system

    Get PDF
    Heats of solution of silver and gold in dilute silver-gold-tin alloys as function of alloy compositio

    Structural changes in cartilage and collagen studied by high temperature Raman spectroscopy

    Get PDF
    Understanding the high temperature behavior of collagen and collagenous tissue is important for surgical procedures and biomaterials processing for the food, pharmaceutical, and cosmetics industries. One primary event for proteins is thermal denaturation that involves unfolding the polypeptide chains while maintaining the primary structure intact. Collagen in the extracellular matrix of cartilage and other connective tissue is a hierarchical material containing bundles of triple-helical fibers associated with water and proteoglycan components. Thermal analysis of dehydrated collagen indicates irreversible denaturation at high temperature between 135°C and 200°C, with another reversible event at ∼60-80°C for hydrated samples. We report high temperature Raman spectra for freeze-dried cartilage samples that show an increase in laser-excited fluorescence interpreted as conformational changes associated with denaturation above 140°C. Spectra for separated collagen and proteoglycan fractions extracted from cartilage indicate the changes are associated with collagen. The Raman data also show appearance of new features indicating peptide bond hydrolysis at high temperature implying that molecular H2O is retained within the freeze-dried tissue. This is confirmed by thermogravimetric analysis that show 5-7 wt% H2O remaining within freeze-dried cartilage that is released progressively upon heating up to 200°C. Spectra obtained after exposure to high temperature and re-hydration following recovery indicate that the capacity of the denatured collagen to re-absorb water is reduced. Our results are important for revealing the presence of bound H2O within the collagen component of connective tissue even after freeze-drying and its role in denaturation that is accompanied by or perhaps preceded by breakdown of the primary polypeptide structure

    Wetting layer thickness and early evolution of epitaxially strained thin films

    Full text link
    We propose a physical model which explains the existence of finite thickness wetting layers in epitaxially strained films. The finite wetting layer is shown to be stable due to the variation of the non-linear elastic free energy with film thickness. We show that anisotropic surface tension gives rise to a metastable enlarged wetting layer. The perturbation amplitude needed to destabilize this wetting layer decreases with increasing lattice mismatch. We observe the development of faceted islands in unstable films.Comment: 4 pages, 3 eps figure

    ECHO user's guide

    Get PDF
    There are no author-identified significant results in this report

    Compact steep-spectrum sources from the S4 sample

    Get PDF
    We present the results of 5-GHz observations with the VLA A-array of a sample of candidate Compact Steep Spectrum sources (CSSs) selected from the S4 survey. We also estimate the symmetry parameters of high-luminosity CSSs selected from different samples of radio sources, and compare these with the larger sources of similar luminosity to understand their evolution and the consistency of the CSSs with the unified scheme for radio galaxies and quasars. The majority of CSSs are likely to be young sources advancing outwards through a dense asymmetric environment. The radio properties of CSSs are found to be consistent with the unified scheme, in which the axes of the quasars are observed close to the line of sight, while radio galaxies are observed close to the plane of the sky.Comment: accepted for publication in mnras; 8 pages, figure 1 with 21 images, and two additional figures; 2 table

    Quantitative infrared spectroscopy of minor constituents of the Earth's atmosphere

    Get PDF
    We obtain quantitative laboratory spectroscopic measurements of molecular constituents which are of importance in understanding the health of the Earth's atmosphere, and, in particular, emphasize those species which are important for understanding stratospheric kinetics or are used for long term monitoring of the stratosphere. Our measurements provide: (1) line and band intensity values which are needed to establish limits of detectability for as yet unobserved species and to quantify the abundance of those species which are observed; (2) line-positions, -half widths and pressure induced shifts are all needed for remote sensing techniques, and (3) data on the above basic molecular parameters at temperatures and pressures appropriate for the real atmosphere

    A Matrix Hyperbolic Cosine Algorithm and Applications

    Full text link
    In this paper, we generalize Spencer's hyperbolic cosine algorithm to the matrix-valued setting. We apply the proposed algorithm to several problems by analyzing its computational efficiency under two special cases of matrices; one in which the matrices have a group structure and an other in which they have rank-one. As an application of the former case, we present a deterministic algorithm that, given the multiplication table of a finite group of size nn, it constructs an expanding Cayley graph of logarithmic degree in near-optimal O(n^2 log^3 n) time. For the latter case, we present a fast deterministic algorithm for spectral sparsification of positive semi-definite matrices, which implies an improved deterministic algorithm for spectral graph sparsification of dense graphs. In addition, we give an elementary connection between spectral sparsification of positive semi-definite matrices and element-wise matrix sparsification. As a consequence, we obtain improved element-wise sparsification algorithms for diagonally dominant-like matrices.Comment: 16 pages, simplified proof and corrected acknowledging of prior work in (current) Section

    Spectral evidence for a powerful compact jet from XTE J1118+480

    Get PDF
    We present observations of the X-ray transient XTE J1118+480 during its Low/Hard X-ray state outburst in 2000, at radio and sub-millimetre wavelengths with the VLA, Ryle Telescope, MERLIN and JCMT. The high-resolution MERLIN observations reveal all the radio emission (at 5 GHz) to come from a compact core with physical dimensions smaller than 65*d(kpc) AU. The combined radio data reveal a persistent and inverted radio spectrum, with spectral index \~+0.5. The source is also detected at 350 GHz, on an extrapolation of the radio spectrum. Flat or inverted radio spectra are now known to be typical of the Low/Hard X-ray state, and are believed to arise in synchrotron emission from a partially self-absorbed jet. Comparison of the radio and sub-millimetre data with reported near-infrared observations suggest that the synchrotron emission from the jet extends to the near-infrared, or possibly even optical regimes. In this case the ratio of jet power to total X-ray luminosity is likely to be P_J/L_X >> 0.01, depending on the radiative efficiency and relativistic Doppler factor of the jet. Based on these arguments we conclude that during the period of our observations XTE J1118+480 was producing a powerful outflow which extracted a large fraction of the total accretion power.Comment: Accepted for publication as a Letter in MNRA
    corecore