4,335 research outputs found

    Analytical photoionization mass spectrometer with an argon gas filter between the light source and monochrometer Patent

    Get PDF
    Analytical photoionization mass spectrometer with argon gas filter between light source and monochromete

    Improved photoionization mass spectrometer

    Get PDF
    Improved spectrometer for gas analysis lessens the intensity problem that occurs in obtaining dispersed ultraviolet radiation. A filter, consisting of a selectively transmitting gas cell, a thin film or mirror, or a predispersing grating, alleviates problems of interference from higher-order spectral lines and from scattered ultraviolet light

    Unconventional pairing in bipolaronic theories

    Get PDF
    Various mechanisms have been put forward for cuprate superconductivity, which fit largely into two camps: spin-fluctuation and electron-phonon (el-ph) mechanisms. However, in spite of a large effort, electron-phonon interactions are not fully understood away from clearly defined limits. To this end, we use a numerically exact algorithm to simulate the binding of bipolarons. We present the results of a continuous-time quantum Monte-Carlo (CTQMC) algorithm on a tight-binding lattice, for bipolarons with arbitrary interaction range in the presence of strong coulomb repulsion. The algorithm is sufficiently efficient that we can discuss properties of bipolarons with various pairing symmetries. We investigate the effective mass and binding energies of singlet and triplet real-space bipolarons for the first time, and discuss the extensions necessary to investigate dd-symmetric pairs.Comment: Submitted to M2S-HTSC VIII, Dresden 2006, 2 page

    Effects of lattice geometry and interaction range on polaron dynamics

    Get PDF
    We study the effects of lattice type on polaron dynamics using a continuous-time quantum Monte-Carlo approach. Holstein and screened Froehlich polarons are simulated on a number of different Bravais lattices. The effective mass, isotope coefficients, ground state energy and energy spectra, phonon numbers, and density of states are calculated. In addition, the results are compared with weak and strong coupling perturbation theory. For the Holstein polaron, it is found that the crossover between weak and strong coupling results becomes sharper as the coordination number is increased. In higher dimensions, polarons are much less mobile at strong coupling, with more phonons contributing to the polaron. The total energy decreases monotonically with coupling. Spectral properties of the polaron depend on the lattice type considered, with the dimensionality contributing to the shape and the coordination number to the bandwidth. As the range of the electron-phonon interaction is increased, the coordination number becomes less important, with the dimensionality taking the leading role.Comment: 16 pages, 12 figure

    Absolute photoionization cross sections of atomic oxygen

    Get PDF
    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states

    Kinetic energies of fragment ions produced by dissociative photoionization of NO

    Get PDF
    The kinetic energies of ions produced by dissociative photoionization of NO have been measured at the discrete resonance lines of He (584A) and Ne (736A), and with undispersed synchrotron radiation. O sup + ions were identified with energies from 0 to approximately 0.5 eV and two groups of N sup + ions one with energy of 0.36 eV and another with energies between 0.9 and 1.5 eV, apparently produced by predissociation of the C sup 3 P 1 and B'1 sigma states respectively

    Charged Higgs bosons from the 3-3-1 models and the R(D(∗))\mathcal{R}(D^{(*)}) anomalies

    Get PDF
    Several anomalies in the semileptonic B-meson decays such as R(D(∗))\mathcal{R}(D^{(*)}) have been reported by BABARBABAR, Belle, and LHCb collaborations recently. In this paper, we investigate the contributions of the charged Higgs bosons from the 3-3-1 models to the R(D(∗))\mathcal{R}(D^{(*)}) anomalies. We find that, in a wide range of parameter space, the 3-3-1 models might give reasonable explanations to the R(D(∗))\mathcal{R}(D^{(*)}) anomalies and other analogous anomalies of the B meson's semileptonic decays.Comment: Accpeted by Physical Review

    Tunable refraction in a two dimensional quantum metamaterial

    Full text link
    In this paper we consider a two-dimensional metamaterial comprising an array of qubits (two level quantum objects). Here we show that a two-dimensional quantum metamaterial may be controlled, e.g. via the application of a magnetic flux, so as to provide controllable refraction of an input signal. Our results are consistent with a material that could be quantum birefringent (beam splitter) or not dependent on the application of this control parameter. We note that quantum metamaterials as proposed here may be fabricated from a variety of current candidate technologies from superconducting qubits to quantum dots. Thus the ideas proposed in this work would be readily testable in existing state of the art laboratories.Comment: 4 pages, 2 figure
    • …
    corecore