58 research outputs found

    The Hamilton-Jacobi Approach to Teleparallelism

    Full text link
    We intend to analyse the constraint structure of Teleparallelism employing the Hamilton-Jacobi formalism for singular systems. This study is conducted without using an ADM 3+1 decomposition and without fixing time gauge condition. It can be verified that the field equations constitute an integrable system.Comment: 12 pages, no figur

    Schwinger's Principle and Gauge Fixing in the Free Electromagnetic Field

    Full text link
    A manifestly covariant treatment of the free quantum eletromagnetic field, in a linear covariant gauge, is implemented employing the Schwinger's Variational Principle and the B-field formalism. It is also discussed the abelian Proca's model as an example of a system without constraints.Comment: 8 pages. Format PTPtex. No figur

    Causal Structure and Birefringence in Nonlinear Electrodynamics

    Full text link
    We investigate the causal structure of general nonlinear electrodynamics and determine which Lagrangians generate an effective metric conformal to Minkowski. We also proof that there is only one analytic nonlinear electrodynamics presenting no birefringence.Comment: 11 pages, no figure

    Bopp-Podolsky black holes and the no-hair theorem

    Full text link
    Bopp-Podolsky electrodynamics is generalized to curved space-times. The equations of motion are written for the case of static spherically symmetric black holes and their exterior solutions are analyzed using Bekenstein's method. It is shown the solutions split-up into two parts, namely a non-homogeneous (asymptotically massless) regime and a homogeneous (asymptotically massive) sector which is null outside the event horizon. In addition, in the simplest approach to Bopp-Podolsky black holes, the non-homogeneous solutions are found to be Maxwell's solutions leading to a Reissner-Nordstr\"om black hole. It is also demonstrated that the only exterior solution consistent with the weak and null energy conditions is the Maxwell's one. Thus, in light of energy conditions, it is concluded that only Maxwell modes propagate outside the horizon and, therefore, the no-hair theorem is satisfied in the case of Bopp-Podolsky fields in spherically symmetric space-times.Comment: 9 pages, updated to match published versio

    Dark matter effects in modified teleparallel gravity

    Full text link
    This work investigates dark matter (DM) effects in compact objects in modified teleparallel gravity (MTG) in which a modification of Teleparallel Equivalent to General Relativity is used. We applied a tetrad to the modified field equations where a set of relations is found. The conservation equation allows us to rewrite our Tolman-Oppenheimer-Volkoff equations with an effective gravitational coupling constant. As input to these new equations, we use a relativistic mean-field (RMF) model with dark matter content included, obtained from a Lagrangian density with both, hadronic and dark particle degrees of freedom, as well as the Higgs boson, used as a mediator in both sectors of the theory. Through numerical calculations, we analyze the mass-radius diagrams obtained from different parametrizations of the RMF-DM model, generated by assuming different values of the dark particle Fermi momentum and running the free parameter coming from the MTG. Our results show that it is possible for the system simultaneously support more DM content, and be compatible with recent astrophysical data provided by LIGO and Virgo Collaboration, as well as by NASA's Neutron star Interior Composition Explorer (NICER).Comment: 8 pages, 2 figure

    How can one probe Podolsky Electrodynamics?

    Full text link
    We investigate the possibility of detecting the Podolsky generalized electrodynamics constant aa. First we analyze an ion interferometry apparatus proposed by B. Neyenhuis, et al (Phys. Rev. Lett. 99, (2007) 200401) who looked for deviations from Coulomb's inverse-square law in the context of Proca model. Our results show that this experiment has not enough precision for measurements of aa. In order to set up bounds for aa we investigate the influence of Podolsky's electrostatic potential on the ground state of the Hydrogen atom. The value of the ground state energy of the Hydrogen atom requires Podolsky's constant to be smaller than 5.6 fm, or in energy scales larger than 35.51 MeV.Comment: 12 pages, 2 figure
    • …
    corecore