1,952 research outputs found
A rare case of retroperitoneal leiomyosarcoma
Leiomyosarcoma, a rare malignancy of smooth muscle may arise from the retroperitoneum. They often reach a large size before diagnosis is made. Patient presents with vague symptoms, as such retroperitoneal malignancies are related to displacement of organs and obstructive phenomenon. The present paper is one of the very few case reports of retroperitoneal leiomyosarcoma which illustrates the presenting symptoms, gross and microscopic findings, treatment modalities and prognostic indicators of a 70 years old male seen at Government medical college, New Civil Hospital, Surat
Crowdsourcing Cybersecurity: Cyber Attack Detection using Social Media
Social media is often viewed as a sensor into various societal events such as
disease outbreaks, protests, and elections. We describe the use of social media
as a crowdsourced sensor to gain insight into ongoing cyber-attacks. Our
approach detects a broad range of cyber-attacks (e.g., distributed denial of
service (DDOS) attacks, data breaches, and account hijacking) in an
unsupervised manner using just a limited fixed set of seed event triggers. A
new query expansion strategy based on convolutional kernels and dependency
parses helps model reporting structure and aids in identifying key event
characteristics. Through a large-scale analysis over Twitter, we demonstrate
that our approach consistently identifies and encodes events, outperforming
existing methods.Comment: 13 single column pages, 5 figures, submitted to KDD 201
Surface and interface study of pulsed-laser-deposited off-stoichiometric NiMnSb thin films on Si(100) substrate
We report a detailed study of surface and interface properties of
pulsed-laser deposited NiMnSb films on Si (100) substrate as a function of film
thickness. As the thickness of films is reduced below 35 nm formation of a
porous layer is observed. Porosity in this layer increases with decrease in
NiMnSb film thickness. These morphological changes of the ultra thin films are
reflected in the interesting transport and magnetic properties of these films.
On the other hand, there are no influences of compositional in-homogeneity and
surface/interface roughness on the magnetic and transport properties of the
films.Comment: 13 pages, 7 figures, Submitted to Phys. Rev.
Negativity and quantum discord in Davies environments
We investigate the time evolution of negativity and quantum discord for a
pair of non-interacting qubits with one being weakly coupled to a decohering
Davies--type Markovian environment. At initial time of preparation, the qubits
are prepared in one of the maximally entangled pure Bell states. In the
limiting case of pure decoherence (i.e. pure dephasing), both, the quantum
discord and negativity decay to zero in the long time limit. In presence of a
manifest dissipative dynamics, the entanglement negativity undergoes a sudden
death at finite time while the quantum discord relaxes continuously to zero
with increasing time. We find that in dephasing environments the decay of the
negativity is more propitious with increasing time; in contrast, the evolving
decay of the quantum discord proceeds weaker for dissipative environments.
Particularly, the slowest decay of the quantum discord emerges when the energy
relaxation time matches the dephasing time.Comment: submitted for publicatio
Operational approach to open dynamics and quantifying initial correlations
A central aim of physics is to describe the dynamics of physical systems.
Schrodinger's equation does this for isolated quantum systems. Describing the
time evolution of a quantum system that interacts with its environment, in its
most general form, has proved to be difficult because the dynamics is dependent
on the state of the environment and the correlations with it. For discrete
processes, such as quantum gates or chemical reactions, quantum process
tomography provides the complete description of the dynamics, provided that the
initial states of the system and the environment are independent of each other.
However, many physical systems are correlated with the environment at the
beginning of the experiment. Here, we give a prescription of quantum process
tomography that yields the complete description of the dynamics of the system
even when the initial correlations are present. Surprisingly, our method also
gives quantitative expressions for the initial correlation.Comment: Completely re-written for clarity of presentation. 15 pages and 2
figure
Infrared spectral studies of Zn-substituted CuFeCrO4 spinel ferrite system
The spinel solid solution series Znx Cu1–x FeCrO4 with x = 0.0,0.2,0.4 and 0.6 has been studied by infrared absorption spectroscopy. The IR-spectrum showed two main absorption bands ν1 and ν2 in the range 400-600 cm-1 arising from tetrahedral (A) and octahedral (B) interstitial sites in the spinel lattice. The absence of ν4 band suggests that lattice vibrations are insignificant. No shoulder or splitting is observed around ν1 and ν2 bands confirming absence of Fe+2 ions in the system. The sharpening of band with Zn- content (x) is due to the fact that the system changes from inverse to normal spinel structure. The structural and optical properties are correlated and the bulk modulus, compressional and shear velocity values determined through IR spectral analysis are in good agreement to those obtained through ultrasonic pulse transmission technique.Author Affiliation: M C Chhantbar, U N Trivedi, P V Tanna, H J Shah, R P Vara, H H Joshi and K B Modi
Department of Physics, Saurashtra University,
Rajkot-360 005, Gujarat, India
E-mail : [email protected] of Physics, Saurashtra University,
Rajkot-360 005, Gujarat, Indi
Recommended from our members
Structural Requirements for the BARD1 Tumor Suppressor in Chromosomal Stability and Homology-directed DNA Repair
The BRCA1 tumor suppressor exists as a heterodimeric complex with BARD1, and this complex is thought to mediate many of the functions ascribed to BRCA1, including its role in tumor suppression. The two proteins share a common structural organization that features an N-terminal RING domain and two C-terminal BRCT motifs, whereas BARD1 alone also contains three tandem ankyrin repeats. In normal cells, the BRCA1/ BARD1 heterodimer is believed to enhance chromosome stability by promoting homology-directed repair (HDR) of double strand DNA breaks. Here we have investigated the structural requirements for BARD1 in this process by complementation of Bard1-null mouse mammary carcinoma cells. Our results demonstrate that the ankyrin and BRCT motifs of BARD1 are each essential for both chromosome stability and HDR. Tandem BRCT motifs, including those found at the C terminus of BARD1, are known to form a phosphoprotein recognition module. Nonetheless, the HDR function of BARD1 was not perturbed by synthetic mutations predicted to ablate the phospho-recognition activity of its BRCT sequences, suggesting that some functions of the BRCT domains are not dependent on their ability to bind phosphorylated ligands. Also, cancer-associated missense mutations in the BRCT domains of BARD1 (e.g. C557S, Q564H, V695L, and S761N) have been observed in patients with breast, ovarian, and endometrial tumors. However, none of these was found to affect the HDR activity of BARD1, suggesting that any increased cancer risk conferred by these mutations is not because of defects in this repair mechanism
- …