102 research outputs found

    Coupling of a locally implanted rare-earth ion ensemble to a superconducting micro-resonator

    Full text link
    We demonstrate the coupling of rare-earth ions locally implanted in a substrate (Gd3+^{3+} in Al2_{2}O3_{3}) to a superconducting NbN lumped-element micro-resonator. The hybrid device is fabricated by a controlled ion implantation of rare-earth ions in well-defined micron-sized areas, aligned to lithographically defined micro-resonators. The technique does not degrade the internal quality factor of the resonators which remain above 10510^{5}. Using microwave absorption spectroscopy we observe electron-spin resonances in good agreement with numerical modelling and extract corresponding coupling rates of the order of 11 MHz and spin linewidths of 50−6550 - 65 MHz.Comment: 4 pages, 2 Figure

    Quasiparticles in the vortex state of V3Si

    Get PDF
    Low-energy quasiparticle excitations in the vortex state of the superconductor V3Si have been investigated using the de Haas-van Alphen effect. Quantum oscillations persist to surprisingly low values of B0/B(c2) is similar to 0.6 and T/T(c) is similar to 0.001. The superconducting state introduces a field-dependent quasiparticle damping which has a value HBAR tau-1 almost-equal-to 0.25 DELTA at the lowest fields investigated, considerably less than the superconducting gap DELTA. Quantum oscillations are attributed to the presence of a gapless excitation spectrum and may be a universal characteristic of superconductors in the vortex state

    Spin-zero anomaly in the magnetic quantum oscillations of a two-dimensional metal

    Full text link
    We report on an anomalous behavior of the spin-splitting zeros in the de Haas-van Alphen (dHvA) signal of a quasi-two-dimensional organic superconductor. The zeros as well as the angular dependence of the amplitude of the second harmonic deviate remarkably from the standard Lifshitz-Kosevich (LK) prediction. In contrast, the angular dependence of the fundamental dHvA amplitude as well as the spin-splitting zeros of the Shubnikov-de Haas signal follow the LK theory. We can explain this behavior by small chemical-potential oscillations and find a very good agreement between theory and experiment. A detailed wave-shape analysis of the dHvA signal corroborates the existence of an oscillating chemical potential

    Heavy quasiparticles in the ferromagnetic superconductor ZrZn2

    Get PDF
    We report a study of the de Haas-van Alphen effect in the normal state of the ferromagnetic superconductor ZrZn2. Our results are generally consistent with an LMTO band structure calculation which predicts four exchange-split Fermi surface sheets. Quasiparticle effective masses are enhanced by a factor of about 4.9 implying a strong coupling to magnetic excitations or phonons. Our measurements provide insight in to the mechanism for superconductivity and unusual thermodynamic properties of ZrZn2.Comment: 5 pages, 2 figures (one color

    On the de Haas - van Alphen oscillations in quasi-two-dimensional metals: effect of the Fermi surface curvature

    Full text link
    Here, we present the results of theoretical analysis of the de Haas-van Alphen oscillations in quasi-two-dimensional normal metals. We had been studying effects of the Fermi surface (FS) shape on these oscillations. It was shown that the effects could be revealed and well pronounced when the FS curvature becomes zero at cross-sections with extremal cross-sectional areas. In this case both shape and amplitude of the oscillations could be significantly changed. Also, we analyze the effect of the FS local geometry on the angular dependencies of the oscillation amplitudes when the magnetic field is tilted away from the FS symmetry axis by the angle θ.\theta. We show that a peak appears at θ≈0\theta \approx 0 whose height could be of the same order as the maximum at the Yamaji angle. This peak emerges when the FS includes zero curvature cross-sections of extremal areas. Such maximum was observed in experiments on the α−(BETS)4TIHg(SeCN)4.\alpha-(BETS)_4TIHg(SeCN)_4. The obtained results could be applied to organic metals and other quasi-two-dimensional compounds.Comment: 9 pages, 4 figures, text added, references adde

    Angle-Dependent Microresonator ESR Characterization of Locally Doped Gd3+:Al2O3

    Get PDF
    Interfacing rare-earth-doped crystals with superconducting circuit architectures provides an attractive platform for quantum memory and transducer devices. Here, we present the detailed characterization of such a hybrid system: a locally implanted rare-earth Gd3+ in Al2O3 spin system coupled to a superconducting microresonator. We investigate the properties of the implanted spin system through angular-dependent microresonator electron spin resonance (micro-ESR) spectroscopy. We find, despite the high-energy near-surface implantation, the resulting micro-ESR spectra to be in excellent agreement with the modeled Hamiltonian, supporting the integration of dopant ions into their relevant lattice sites while maintaining crystalline symmetries. Furthermore, we observe clear contributions from individual microwave field components of our microresonator, emphasizing the need for controllable local implantation

    Quantitative investigation of the de Haas-van Alphen effect in the superconducting state

    Get PDF
    The de Haas-van Alphen effect in the vortex state of the type-II superconductors 2H-NbSe2 and V3Si is studied. We discuss the experimental and theoretical considerations pertaining to the observation of such oscillations. Macroscopic pinning of the flux lattice cannot explain the observed attenuation of quantum oscillations in the mixed state. A critical comparison of our measurements with the various microscopic theoretical models describing this phenomenon is made. We show how orientation-dependent de Haas-van Alphen data may be analyzed in a model-dependent way to yield the variation of the superconducting gap over the Fermi surface
    • …
    corecore