2,340 research outputs found
Collective modes and the speed of sound in the Fulde-Ferrell-Larkin-Ovchinnikov state
We consider the density response of a spin-imbalanced ultracold Fermi gas in
an optical lattice in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. We
calculate the collective mode spectrum of the system in the generalised random
phase approximation and find that though the collective modes are damped even
at zero tempererature, the damping is weak enough to have well-defined
collective modes. We calculate the speed of sound in the gas and show that it
is anisotropic due to the anisotropy of the FFLO pairing, which implies an
experimental signature for the FFLO state.Comment: 13 pages, 9 figures (revised version
Bertini intra-nuclear cascade implementation in Geant4
We present here a intra-nuclear cascade model implemented in Geant4 5.0. The
cascade model is based on re-engineering of INUCL code. Models included are
Bertini intra-nuclear cascade model with exitons, pre-equilibrium model,
nucleus explosion model, fission model, and evaporation model. Intermediate
energy nuclear reactions from 100 MeV to 3 GeV energy are treated for proton,
neutron, pions, photon and nuclear isotopes. We represent overview of the
models, review results achieved from simulations and make comparisons with
experimental data.Comment: Computing in High Energy and Nuclear Physics, La Jolla, California,
March 24-28, 2003 1 tar fil
Superfluid phases of fermions with hybridized and orbitals
We explore the superfluid phases of a two-component Fermi mixture with
hybridized orbitals in optical lattices. We show that there exists a general
mapping of this system to the Lieb lattice. By using simple multiband models
with hopping between and -orbital states, we show that superfluid order
parameters can have a -phase difference between lattice sites, which is
distinct from the case with hopping between -orbitals. If the population
imbalance between the two spin species is tuned, the superfluid phase may
evolve through various phases due to the interplay between hopping,
interactions and imbalance. We show that the rich behavior is observable in
experimentally realizable systems.Comment: 13 pages, 11 figures. Published versio
Turbulent Vortex Flow Responses at the AB Interface in Rotating Superfluid 3He-B
In a rotating two-phase sample of 3He-B and magnetic-field stabilized 3He-A
the large difference in mutual friction dissipation at 0.20 Tc gives rise to
unusual vortex flow responses. We use noninvasive NMR techniques to monitor
spin down and spin up of the B-phase superfluid component to a sudden change in
the rotation velocity. Compared to measurements at low field with no A-phase,
where these responses are laminar in cylindrically symmetric flow, spin down
with vortices extending across the AB interface is found to be faster,
indicating enhanced dissipation from turbulence. Spin up in turn is slower,
owing to rapid annihilation of remanent vortices before the rotation increase.
As confirmed by both our NMR signal analysis and vortex filament calculations,
these observations are explained by the additional force acting on the B-phase
vortex ends at the AB interface.Comment: 6 pages, 6 figure
Microkelvin thermometry with Bose-Einstein condensates of magnons and applications to studies of the AB interface in superfluid He
Coherent precession of trapped Bose-Einstein condensates of magnons is a
sensitive probe for magnetic relaxation processes in superfluid 3He-B down to
the lowest achievable temperatures. We use the dependence of the relaxation
rate on the density of thermal quasiparticles to implement thermometry in 3He-B
at temperatures below 300 K. Unlike popular vibrating wire or quartz
tuning fork based thermometers, magnon condensates allow for contactless
temperature measurement and make possible an independent in situ determination
of the residual zero-temperature relaxation provided by the radiation damping.
We use this magnon-condensate-based thermometry to study the thermal impedance
of the interface between A and B phases of superfluid 3He. The magnon
condensate is also a sensitive probe of the orbital order-parameter texture.
This has allowed us to observe for the first time the non-thermal signature of
the annihilation of two AB interfaces.Comment: 26 pages, 7 figures, manuscript prepared for EU Microkelvin
Collaboration Workshop 2013. Accepted for publication in Journal of Low
Temperature Physic
Super Stability of Laminar Vortex Flow in Superfluid 3He-B
Vortex flow remains laminar up to large Reynolds numbers (Re~1000) in a
cylinder filled with 3He-B. This is inferred from NMR measurements and
numerical vortex filament calculations where we study the spin up and spin down
responses of the superfluid component, after a sudden change in rotation
velocity. In normal fluids and in superfluid 4He these responses are turbulent.
In 3He-B the vortex core radius is much larger which reduces both surface
pinning and vortex reconnections, the phenomena, which enhance vortex bending
and the creation of turbulent tangles. Thus the origin for the greater
stability of vortex flow in 3He-B is a quantum phenomenon. Only large flow
perturbations are found to make the responses turbulent, such as the walls of a
cubic container or the presence of invasive measuring probes inside the
container.Comment: 4 pages, 6 figure
Spin-asymmetric Josephson effect
The Josephson effect is a manifestation of the macroscopic phase coherence of
superconductors and superfluids. We propose that with ultracold Fermi gases one
can realise a spin-asymmetric Josephson effect in which the two spin components
of a Cooper pair are driven asymmetrically - corresponding to driving a
Josephson junction of two superconductors with different voltages V_\uparrow
and V_\downarrow for spin up and down electrons, respectively. We predict that
the spin up and down components oscillate at the same frequency but with
different amplitudes. Our results reveal that the standard description of the
Josephson effect in terms of bosonic pair tunnelling is insufficient. We
provide an intuitive interpretation of the Josephson effect as interference in
Rabi oscillations of pairs and single particles, the latter causing the
asymmetry.Comment: Article: 4 pages, 3 figures. Supplementary material: 12 pages, 7
figure
- …