12,478 research outputs found

    ab inito local vibrational modes of light impurities in silicon

    Full text link
    We have developed a formulation of density functional perturbation theory for the calculation of vibrational frequencies in molecules and solids, which uses numerical atomic orbitals as a basis set for the electronic states. The (harmonic) dynamical matrix is extracted directly from the first order change in the density matrix with respect to infinitesimal atomic displacements from the equilibrium configuration. We have applied this method to study the vibrational properties of a number of hydrogen-related complexes and light impurities in silicon. The diagonalization of the dynamical matrix provides the vibrational modes and frequencies, including the local vibrational modes (LVMs) associated with the defects. In addition to tests on simple molecules, results for interstitial hydrogen, hydrogen dimers, vacancy-hydrogen and self-interstitial-hydrogen complexes, the boron-hydrogen pair, substitutional C, and several O-related defects in c-Si are presented. The average error relative to experiment for the aprox.60 predicted LVMs is about 2% with most highly harmonic modes being extremely close and the more anharmonic ones within 5-6% of the measured values.Comment: 18 pages, 1 figur

    Equation of State in a Strongly Interacting Relativistic System

    Full text link
    We study the evolution of the equation of state of a strongly interacting quark system as a function of the diquark interaction strength. We show that for the system to avoid collapsing into a pressureless Boson gas at sufficiently strong diquark coupling strength, the diquark-diquark repulsion has to be self-consistently taken into account. In particular, we find that the tendency at zero temperature of the strongly interacting diquark gas to condense into the system ground state is compensated by the repulsion between diquarks if the diquark-diquark coupling constant is higher than a critical value λC=7.65\lambda_C=7.65. Considering such diquark-diquark repulsion, a positive pressure with no significant variation along the whole strongly interacting region is obtained. A consequence of the diquark-diquark repulsion is that the system maintains its BCS character in the whole strongly interacting region.Comment: 9 pages, 7 figs, To appear in Phys. Rev.

    Effects of Bose-Einstein Condensation on forces among bodies sitting in a boson heat bath

    Get PDF
    We explore the consequences of Bose-Einstein condensation on two-scalar-exchange mediated forces among bodies that sit in a boson gas. We find that below the condensation temperature the range of the forces becomes infinite while it is finite at temperatures above condensation.Comment: 10 pages, 2 figure

    Direct Calculation of Spin-Stiffness for Spin-1/2 Heisenberg Models

    Full text link
    The spin-stiffness of frustrated spin-1/2 Heisenberg models in one and two dimensions is computed for the first time by exact diagonalizations on small clusters that implement spin-dependent twisted boundary conditions. Finite-size extrapolation to the thermodynamic limit yields a value of 0.14±0.010.14\pm 0.01 for the spin-stiffness of the unfrustrated planar antiferromagnet. We also present a general discussion of the linear-response theory for spin-twists, which ultimately leads to the moment sum-rule.Comment: 11 pgs, TeX, LA-UR-94-94 (to be published in Phys. Rev. B

    Effect of antimony on the eutectic reaction of heavy section spheroidal graphite castings

    Get PDF
    There is a strong demand for heavy section castings made of spheroidal graphite with a fully ferritic matrix, e.g. for manufacturing hubs for windmills. Such castings with slow solidification process are prone to graphite degeneration that leads to a dramatic decrease of the mechanical properties of the cast parts. Chunky graphite is certainly the most difficult case of graphite degeneracy, though it has long been known that the limited and controlled addition of antimony may help eliminate it. The drawback of this remedy is that too large Sb additions lead to other forms of degenerate graphite, and also that antimony is a pearlite promoter. As part of an investigation aimed at mastering low level additions to cast iron melts before casting, solidification of large blocks with or without Sb added was followed by thermal analysis. Comparison of the cooling curves and of the microstructures of these different castings gives suggestions to understand the controlling nucleation and growth mechanisms for chunky graphite cells
    corecore