378 research outputs found

    Correlation between oxygen isotope effects on the transition temperature and the magnetic penetration depth in high-temperature superconductors close to optimal doping

    Full text link
    The oxygen-isotope (^{16}O/^{18}O) effect (OIE) on the in-plane magnetic penetration depth \lambda_{ab}(0) in optimally-doped YBa_2Cu_3O_{7-\delta} and La_{1.85}Sr_{0.15}CuO_4, and in slightly underdoped YBa_2Cu_4O_8 and Y_{0.8}Pr_{0.2}Ba_2Cu_3O_{7-\delta} was studied by means of muon-spin rotation. A substantial OIE on \lambda_{ab}(0) with an OIE exponent \beta_O=-d\ln\lambda_{ab}(0)/d\ln M_O\approx - 0.2 (M_O is the mass of the oxygen isotope), and a small OIE on the transition temperature T_c with an OIE exponent \alpha_O=-d\ln T_{c}/d \ln M_O\simeq0.02 to 0.1 were observed. The observation of a substantial isotope effect on \lambda_{ab}(0), even in cuprates where the OIE on T_c is small, indicates that lattice effects play an important role in cuprate HTS.Comment: 6 pages, 4 figure

    2D orbital-like magnetic order in La2−xSrxCuO4{\rm La_{2-x}Sr_xCuO_4}

    Full text link
    In high temperature copper oxides superconductors, a novel magnetic order associated with the pseudogap phase has been identified in two different cuprate families over a wide region of temperature and doping. We here report the observation below 120 K of a similar magnetic ordering in the archetypal cuprate La2−xSrxCuO4{\rm La_{2-x}Sr_xCuO_4} (LSCO) system for x=0.085. In contrast to the previous reports, the magnetic ordering in LSCO is {\it\bf only} short range with an in-plane correlation length of ∼\sim 10 \AA\ and is bidimensional (2D). Such a less pronounced order suggests an interaction with other electronic instabilities. In particular, LSCO also exhibits a strong tendency towards stripes ordering at the expense of the superconducting state.Comment: 4 figures, submitted to Phys. Rev. Let

    Spin anisotropy of the resonance in superconducting FeSe0.5Te0.5

    Full text link
    We have used polarized-neutron inelastic scattering to resolve the spin fluctuations in superconducting FeSe0.5Te0.5 into components parallel and perpendicular to the layers. A spin resonance at an energy of 6.5 meV is observed to develop below T_c in both fluctuation components. The resonance peak is anisotropic, with the in-plane component slightly larger than the out-of-plane component. Away from the resonance peak the magnetic fluctuations are isotropic in the energy range studied. The results are consistent with a dominant singlet pairing state with s^{\pm} symmetry, with a possible minority component of different symmetry.Comment: 5 pages, 4 figure

    Oxygen-isotope effect on the superconducting gap in the cuprate superconductor Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}

    Full text link
    The oxygen-isotope (^{16}O/^{18}O) effect (OIE) on the zero-temperature superconducting energy gap \Delta_0 was studied for a series of Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta} samples (0.0\leq x\leq0.45). The OIE on \Delta_0 was found to scale with the one on the superconducting transition temperature. These experimental results are in quantitative agreement with predictions from a polaronic model for cuprate high-temperature superconductors and rule out approaches based on purely electronic mechanisms.Comment: 5 pages, 3 figure

    Correlated decay of triplet excitations in the Shastry-Sutherland compound SrCu2_2(BO3_3)2_2

    Get PDF
    The temperature dependence of the gapped triplet excitations (triplons) in the 2D Shastry-Sutherland quantum magnet SrCu2_2(BO3_3)2_2 is studied by means of inelastic neutron scattering. The excitation amplitude rapidly decreases as a function of temperature while the integrated spectral weight can be explained by an isolated dimer model up to 10~K. Analyzing this anomalous spectral line-shape in terms of damped harmonic oscillators shows that the observed damping is due to a two-component process: one component remains sharp and resolution limited while the second broadens. We explain the underlying mechanism through a simple yet quantitatively accurate model of correlated decay of triplons: an excited triplon is long-lived if no thermally populated triplons are near-by but decays quickly if there are. The phenomenon is a direct consequence of frustration induced triplon localization in the Shastry--Sutherland lattice.Comment: 5 pages, 4 figure

    Exotic Kondo crossover in a wide temperature region in the topological Kondo insulator SmB6 revealed by high-resolution ARPES

    Full text link
    Temperature dependence of the electronic structure of SmB6 is studied by high-resolution ARPES down to 1 K. We demonstrate that there is no essential difference for the dispersions of the surface states below and above the resistivity saturating anomaly (~ 3.5 K). Quantitative analyses of the surface states indicate that the quasi-particle scattering rate increases linearly as a function of temperature and binding energy, which differs from Fermi-Liquid behavior. Most intriguingly, we observe that the hybridization between the d and f states builds gradually over a wide temperature region (30 K < T < 110 K). The surface states appear when the hybridization starts to develop. Our detailed temperature-dependence results give a complete interpretation of the exotic resistivity result of SmB6, as well as the discrepancies among experimental results concerning the temperature regions in which the topological surface states emerge and the Kondo gap opens, and give new insights into the exotic Kondo crossover and its relationship with the topological surface states in the topological Kondo insulator SmB6.Comment: 8 pages, 5 figure
    • …
    corecore