32,850 research outputs found

    Remarks on the Theory of Cosmological Perturbation

    Full text link
    It is shown that the power spectrum defined in the Synchronous Gauge can not be directly used to calculate the predictions of cosmological models on the large-scale structure of universe, which should be calculated directly by a suitable gauge-invariant power spectrum or the power spectrum defined in the Newtonian Gauge.Comment: 13 pages, 1 figure, minor changes, to be published in Chinese Physics Letter

    Quark-gluon vertex with an off-shell O(a)-improved chiral fermion action

    Full text link
    We perform a study the quark-gluon vertex function with a quenched Wilson gauge action and a variety of fermion actions. These include the domain wall fermion action (with exponentially accurate chiral symmetry) and the Wilson clover action both with the non-perturbatively improved clover coefficient as well as with a number of different values for this coefficient. We find that the domain wall vertex function behaves very well in the large momentum transfer region. The off-shell vertex function for the on-shell improved clover class of actions does not behave as well as the domain wall case and, surprisingly, shows only a weak dependence on the clover coefficient cSWc_{SW} for all components of its Dirac decomposition and across all momenta. Including off-shell improvement rotations for the clover fields can make this action yield results consistent with those from the domain wall approach, as well as helping to determine the off-shell improved coefficient cqc_q^\prime.Comment: 11 pages, 13 figures, REVTeX

    Bulk and Edge excitations in a ν=1\nu =1 quantum Hall ferromagnet

    Full text link
    In this article, we shall focus on the collective dynamics of the fermions in a ν=1\nu = 1 quantum Hall droplet. Specifically, we propose to look at the quantum Hall ferromagnet. In this system, the electron spins are ordered in the ground state due to the exchange part of the Coulomb interaction and the Pauli exclusion principle. The low energy excitations are ferromagnetic magnons. To provide a means for describing these magnons, we shall discuss a method of introducing collective coordinates in the Hilbert space of many-fermion systems. These collective coordinates are bosonic in nature. They map a part of the fermionic Hilbert space into a bosonic Hilbert space. Using this technique, we shall interpret the magnons as bosonic collective ex citations in the Hilbert space of the many-electron Hall system. By considering a Hall droplet of finite extent, we shall also obtain the effective Lagrangian governing the spin collective excitations at the edge of the sample.Comment: Plain TeX 18 Pages Proceedings for the Y2K conference on strongly c orrelated fermionic systems, Calcutta, Indi

    Coherence measurements on Rydberg wave packets kicked by a half-cycle pulse

    Full text link
    A kick from a unipolar half-cycle pulse (HCP) can redistribute population and shift the relative phase between states in a radial Rydberg wave packet. We have measured the quantum coherence properties following the kick, and show that selected coherences can be destroyed by applying an HCP at specific times. Quantum mechanical simulations show that this is due to redistribution of the angular momentum in the presence of noise. These results have implications for the storage and retrieval of quantum information in the wave packet.Comment: 4 pages, 4 figures (5 figure files

    Non-Markovian finite-temperature two-time correlation functions of system operators: beyond the quantum regression theorem

    Full text link
    An extremely useful evolution equation that allows systematically calculating the two-time correlation functions (CF's) of system operators for non-Markovian open (dissipative) quantum systems is derived. The derivation is based on perturbative quantum master equation approach, so non-Markovian open quantum system models that are not exactly solvable can use our derived evolution equation to easily obtain their two-time CF's of system operators, valid to second order in the system-environment interaction. Since the form and nature of the Hamiltonian are not specified in our derived evolution equation, our evolution equation is applicable for bosonic and/or fermionic environments and can be applied to a wide range of system-environment models with any factorized (separable) system-environment initial states (pure or mixed). When applied to a general model of a system coupled to a finite-temperature bosonic environment with a system coupling operator L in the system-environment interaction Hamiltonian, the resultant evolution equation is valid for both L = L^+ and L \neq L^+ cases, in contrast to those evolution equations valid only for L = L^+ case in the literature. The derived equation that generalizes the quantum regression theorem (QRT) to the non-Markovian case will have broad applications in many different branches of physics. We then give conditions on which the QRT holds in the weak system-environment coupling case, and apply the derived evolution equation to a problem of a two-level system (atom) coupled to a finite-temperature bosonic environment (electromagnetic fields) with L \neq L^+.Comment: To appear in the Journal of Chemical Physics (12 pages, 1 figure

    The Origin of C IV Absorption Systems at Redshifts z<1---Discovery of Extended C IV Envelopes Around Galaxies

    Get PDF
    (Abridged) We report the discovery of extended CIV gaseous envelopes around galaxies of a wide range of luminosity and morphological type. First, we show that CIV absorption systems are strongly clustered around galaxies on velocity scales of v < 250 km/s and impact parameter scales of rho < 100 h^{-1} kpc but not on larger velocity or impact parameter scales. Next, adopting measurements of galaxy properties presented in previous papers, we examine how properties of the CIV absorption systems depend on properties of the galaxies. On the basis of 14 galaxy and absorber pairs and 36 galaxies that do not produce corresponding CIV absorption lines to within sensitive upper limits, we find that: (1) Galaxies of a range of morphological type and luminosity appear to possess extended CIV gaseous envelopes of radius R ~ 100 h^{-1} kpc, with abrupt boundaries between the CIV absorbing and non-absorbing regions. (2) The extent of CIV-absorbing gas around galaxies scales with galaxy B-band luminosity as R \propto L_B^{0.5 +/- 0.1} but does not depend strongly on galaxy surface brightness, redshift, or morphological type. And (3) the covering factor of CIV clouds within ~ 100 h^{-1} kpc of galaxies is nearly unity, but there is a large scatter in the mean number of clouds encountered along the line of sight. The most significant implication of the study is that galaxies of a wide range of luminosity and morphological type are surrounded by chemically enriched gas that extends for at least ~ 100 h^{-1} kpc. We consider various scenarios that may have produced metals at large galactic distance and conclude that accreting satellites are most likely to be responsible for chemically enriched gas at large galactic distances to regular looking galaxies.Comment: 19 pages, 3 figures, to appear in ApJ, July 20 200

    Molecular dynamics simulations of the dipolar-induced formation of magnetic nanochains and nanorings

    Full text link
    Iron, cobalt and nickel nanoparticles, grown in the gas phase, are known to arrange in chains and bracelet-like rings due to the long-range dipolar interaction between the ferromagnetic (or super-paramagnetic) particles. We investigate the dynamics and thermodynamics of such magnetic dipolar nanoparticles for low densities using molecular dynamics simulations and analyze the influence of temperature and external magnetic fields on two- and three-dimensional systems. The obtained phase diagrams can be understood by using simple energetic arguments.Comment: 6 pages, 6 figure

    Singular current response from isolated impurities in d-wave superconductors

    Full text link
    The current response of a d-wave superconductor containing a single impurity is calculated and shown to be singular in the low-temperature limit, leading in the case of strong scattering to a 1/T term in the penetration depth λ(T)\lambda(T) similar to that induced by Andreev surface bound states. For a small number of such impurities, we argue this low-TT upturn could be observable in cuprate superconductors.Comment: 4 pages, 2 .eps figures. Minor changes to match the published versio
    corecore