11 research outputs found

    On the controllability of specific Media

    No full text

    О НЕОГРАНИЧЕННЫХ ОПТИМАЛЬНЫХ УПРАВЛЕНИЯХ В КОЭФФИЦИЕНТАХ ДЛЯ ПЛОХО ОБУСЛОВЛЕННЫХ ЭЛЛИПТИЧЕСКИХ КРАЕВЫХ ЗАДАЧ

    No full text
    Розглянуто задачу оптимального керування для лінійного еліптичного рівняння з крайовими умовами Діріхле на межі області. Функцією керування виступає матриця коефіцієнтів А(х) в головній частині еліптичного оператора. Характерною особливістю таких керувань є несиметричність матриці А(х), її необмеженість та виродженість спектра її симетричної складової.We consider an optimal control problem associated to Dirichlet boundary valueproblem for linear elliptic equations on a bounded domain Ω. We take the matrixvalued coecients A(x) of such system as a control in L1(Ω;RN RN). One of the important features of the admissible controls is the fact that the coecient matrices A(x) are non-symmetric, unbounded on Ω, and eigenvalues of the symmetric part Asym = (A + At)=2 may vanish in Ω.Рассмотрена задача оптимального управления для линейного эллиптического уравне­ния с краевыми условиями Дирихле на границе области. В качестве функции управле­ния выступает матрица коэффициентов А(х) в главной части эллиптического оператора. Характерной особенностью таких управлений есть несимметричность матрицы А(х), ее неограниченность и вырожденность спектра ее симметричной составляющей

    ON UNBOUNDED OPTIMAL CONTROLS IN COEFFICIENTS FOR ILL-POSED ELLIPTIC DIRICHLET BOUNDARY VALUE PROBLEMS

    No full text
    We consider an optimal control problem associated to Dirichlet boundary value<br />problem for linear elliptic equations on a bounded domain Ω. We take the matrixvalued coecients A(x) of such system as a control in L1(Ω;RN RN). One of the important features of the admissible controls is the fact that the coecient matrices A(x) are non-symmetric, unbounded on Ω, and eigenvalues of the symmetric part Asym = (A + At)=2 may vanish in Ω

    An Indirect Approach to the Existence of Quasi-Optimal Controls in Coefficients for Multi-Dimensional Thermistor Problem

    No full text
    The paper studies a problem of an optimal control in coefficients for the system of two coupled elliptic equations also known as thermistor problem which provides a simultaneous description of the electric field u=u(x)u=u(x) and temperature heta(x) heta(x). The coefficient bb of operator mathrmdiv,left(b(x),abla,heta(x)ight)mathrm{div},left(b(x), abla , heta(x) ight) is used as the control in W1,q(Omega)W^{1,q}(Omega) with q>N. The optimal control problem is to minimize the discrepancy between a given distribution hetadinL1(Omega) heta_din L^1(Omega) and the temperature of thermistor hetainW01,gamma(Omega) hetain W^{1,gamma}_0(Omega) by choosing an appropriate anisotropic heat conductivity b(x)b(x). Basing on the perturbation theory of extremal problems and the concept of fictitious controls, we propose an extquotedblleft approximation approach extquotedblright and discuss the existence of the so-called quasi-optimal and optimal solutions to the given problem

    Remarks on the Control of Family of b–Equations

    No full text
    Presents cutting-edge results in the areas of control theory and PDEs, giving a broad picture of recent advances Contains contributions from leading experts Includes theoretical studies and models for application

    FOCUS 1: a randomized, double-blinded, multicentre, Phase III trial of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in community-acquired pneumonia

    No full text
    International audienc
    corecore