11 research outputs found
О НЕОГРАНИЧЕННЫХ ОПТИМАЛЬНЫХ УПРАВЛЕНИЯХ В КОЭФФИЦИЕНТАХ ДЛЯ ПЛОХО ОБУСЛОВЛЕННЫХ ЭЛЛИПТИЧЕСКИХ КРАЕВЫХ ЗАДАЧ
Розглянуто задачу оптимального керування для лінійного еліптичного рівняння з крайовими умовами Діріхле на межі області. Функцією керування виступає матриця коефіцієнтів А(х) в головній частині еліптичного оператора. Характерною особливістю таких керувань є несиметричність матриці А(х), її необмеженість та виродженість спектра її симетричної складової.We consider an optimal control problem associated to Dirichlet boundary valueproblem for linear elliptic equations on a bounded domain Ω. We take the matrixvalued coecients A(x) of such system as a control in L1(Ω;RN RN). One of the important features of the admissible controls is the fact that the coecient matrices A(x) are non-symmetric, unbounded on Ω, and eigenvalues of the symmetric part Asym = (A + At)=2 may vanish in Ω.Рассмотрена задача оптимального управления для линейного эллиптического уравнения с краевыми условиями Дирихле на границе области. В качестве функции управления выступает матрица коэффициентов А(х) в главной части эллиптического оператора. Характерной особенностью таких управлений есть несимметричность матрицы А(х), ее неограниченность и вырожденность спектра ее симметричной составляющей
ON UNBOUNDED OPTIMAL CONTROLS IN COEFFICIENTS FOR ILL-POSED ELLIPTIC DIRICHLET BOUNDARY VALUE PROBLEMS
We consider an optimal control problem associated to Dirichlet boundary value<br />problem for linear elliptic equations on a bounded domain Ω. We take the matrixvalued coecients A(x) of such system as a control in L1(Ω;RN RN). One of the important features of the admissible controls is the fact that the coecient matrices A(x) are non-symmetric, unbounded on Ω, and eigenvalues of the symmetric part Asym = (A + At)=2 may vanish in Ω
On the controllability of Maxwell's equation involving nonlocal constitutive relations
soumis à COCV en juin 200
An Indirect Approach to the Existence of Quasi-Optimal Controls in Coefficients for Multi-Dimensional Thermistor Problem
The paper studies a problem of an optimal control in coefficients for the system of two coupled elliptic equations also known as thermistor problem which provides a simultaneous description of the electric field and temperature . The coefficient of operator is used as the control in with q>N. The optimal control problem is to minimize the discrepancy between a given distribution and the temperature of thermistor by choosing an appropriate anisotropic heat conductivity . Basing on the perturbation theory of extremal problems and the concept of fictitious controls, we propose an extquotedblleft approximation approach extquotedblright and discuss the existence of the so-called quasi-optimal and optimal solutions to the given problem
Remarks on the Control of Family of b–Equations
Presents cutting-edge results in the areas of control theory and PDEs, giving a broad picture of recent advances
Contains contributions from leading experts
Includes theoretical studies and models for application
FOCUS 1: a randomized, double-blinded, multicentre, Phase III trial of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in community-acquired pneumonia
International audienc