141 research outputs found

    Subjective localization of electrocutaneous stimuli

    Get PDF
    Studying the perception of spatiotemporal stimulus patterns in various modalities may yield important information on the way in which humans process sensory information. The perception of tactile and nociceptive cutaneous stimulus patterns have been studied by Stolle et al. [1] and Trojan et al. [2][4] respectively. Among other things, both authors studied subjective localization of single stimuli. In Trojan et al. [4], two types of mislocalization patterns were observed for nociceptive single stimuli when comparing the localization reports with the stimulus locations: (1) overall proximal or distal displacement and (2) expansion or contraction of the stimulus area.\ud It is unknown whether tactile and nociceptive stimuli at the same skin site are perceived as being at the same site. Therefore, comparing the spatial perception of tactile and nociceptive cutaneous stimuli may provide new insights into their processing. This comparison can only be successfully made by applying nociceptive and tactile stimuli at the same skin site in the same experiment. This can be done by using a device which has recently been developed at our institute and which we refer to as the bimodal stimulation electrode [3]. \ud Recording the perceived locations of stimuli can be done by letting subjects report these on a scale. The most intuitive scale for this is the stimulated arm itself. However, this would bias the perception of stimulus location by providing visual information of the electrode locations. The goal of the present research was to (1) create and (2) test a setup which allows subjects to report perceived stimulus locations on their own arm without seeing the electrode positions. This was achieved by building a setup consisting of a touch screen (Provision Visboard) which presents a digital image of the subject’s own arm (without electrodes) and which is positioned over this arm after the electrodes have been attached. Subjects can report the localizations by pointing at the screen using a pointer

    Characterization of stroke-related upper limb motor impairments across various upper limb activities by use of kinematic core set measures

    Full text link
    BACKGROUND Upper limb kinematic assessments provide quantifiable information on qualitative movement behavior and limitations after stroke. A comprehensive characterization of spatiotemporal kinematics of stroke subjects during upper limb daily living activities is lacking. Herein, kinematic expressions were investigated with respect to different movement types and impairment levels for the entire task as well as for motion subphases. METHOD Chronic stroke subjects with upper limb movement impairments and healthy subjects performed a set of daily living activities including gesture and grasp movements. Kinematic measures of trunk displacement, shoulder flexion/extension, shoulder abduction/adduction, elbow flexion/extension, forearm pronation/supination, wrist flexion/extension, movement time, hand peak velocity, number of velocity peaks (NVP), and spectral arc length (SPARC) were extracted for the whole movement as well as the subphases of reaching distally and proximally. The effects of the factors gesture versus grasp movements, and the impairment level on the kinematics of the whole task were tested. Similarities considering the metrics expressions and relations were investigated for the subphases of reaching proximally and distally between tasks and subgroups. RESULTS Data of 26 stroke and 5 healthy subjects were included. Gesture and grasp movements were differently expressed across subjects. Gestures were performed with larger shoulder motions besides higher peak velocity. Grasp movements were expressed by larger trunk, forearm, and wrist motions. Trunk displacement, movement time, and NVP increased and shoulder flexion/extension decreased significantly with increased impairment level. Across tasks, phases of reaching distally were comparable in terms of trunk displacement, shoulder motions and peak velocity, while reaching proximally showed comparable expressions in trunk motions. Consistent metric relations during reaching distally were found between shoulder flexion/extension, elbow flexion/extension, peak velocity, and between movement time, NVP, and SPARC. Reaching proximally revealed reproducible correlations between forearm pronation/supination and wrist flexion/extension, movement time and NVP. CONCLUSION Spatiotemporal differences between gestures versus grasp movements and between different impairment levels were confirmed. The consistencies of metric expressions during movement subphases across tasks can be useful for linking kinematic assessment standards and daily living measures in future research and performing task and study comparisons. TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT03135093. Registered 26 April 2017, https://clinicaltrials.gov/ct2/show/NCT03135093

    Correction to: Characterization of stroke-related upper limb motor impairments across various upper limb activities by use of kinematic core set measures

    Full text link
    BACKGROUND Upper limb kinematic assessments provide quantifiable information on qualitative movement behavior and limitations after stroke. A comprehensive characterization of spatiotemporal kinematics of stroke subjects during upper limb daily living activities is lacking. Herein, kinematic expressions were investigated with respect to different movement types and impairment levels for the entire task as well as for motion subphases. METHOD Chronic stroke subjects with upper limb movement impairments and healthy subjects performed a set of daily living activities including gesture and grasp movements. Kinematic measures of trunk displacement, shoulder flexion/extension, shoulder abduction/adduction, elbow flexion/extension, forearm pronation/supination, wrist flexion/extension, movement time, hand peak velocity, number of velocity peaks (NVP), and spectral arc length (SPARC) were extracted for the whole movement as well as the subphases of reaching distally and proximally. The effects of the factors gesture versus grasp movements, and the impairment level on the kinematics of the whole task were tested. Similarities considering the metrics expressions and relations were investigated for the subphases of reaching proximally and distally between tasks and subgroups. RESULTS Data of 26 stroke and 5 healthy subjects were included. Gesture and grasp movements were differently expressed across subjects. Gestures were performed with larger shoulder motions besides higher peak velocity. Grasp movements were expressed by larger trunk, forearm, and wrist motions. Trunk displacement, movement time, and NVP increased and shoulder flexion/extension decreased significantly with increased impairment level. Across tasks, phases of reaching distally were comparable in terms of trunk displacement, shoulder motions and peak velocity, while reaching proximally showed comparable expressions in trunk motions. Consistent metric relations during reaching distally were found between shoulder flexion/extension, elbow flexion/extension, peak velocity, and between movement time, NVP, and SPARC. Reaching proximally revealed reproducible correlations between forearm pronation/supination and wrist flexion/extension, movement time and NVP. CONCLUSION Spatiotemporal differences between gestures versus grasp movements and between different impairment levels were confirmed. The consistencies of metric expressions during movement subphases across tasks can be useful for linking kinematic assessment standards and daily living measures in future research and performing task and study comparisons. TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT03135093. Registered 26 April 2017, https://clinicaltrials.gov/ct2/show/NCT03135093

    Daily-Life Monitoring of Stroke Survivors Motor Performance: The INTERACTION Sensing System

    Get PDF
    The objective of the INTERACTION Eu project is to develop and validate an unobtrusive and modular system for monitoring daily life activities, physical interactions with the environment and for training upper and lower extremity motor function in stroke subjects. This paper describes the development and preliminary testing of the project sensing platform made of sensing shirt, trousers, gloves and shoes. Modular prototypes were designed and built considering the minimal set of inertial, force and textile sensors that may enable an efficient monitoring of stroke patients. The single sensing elements are described and the results of their preliminary lab-level testing are reported

    Daily-life tele-monitoring of motor performance in stroke survivors

    Get PDF
    The objective of the EU project INTERACTION is to develop an unobtrusive and modular sensing system for objective monitoring of daily-life motor performance of stroke survivors. This will enable clinical professionals to advise their patients about their continued daily-life activity profile and home training, and evaluate and optimize rehabilitation programs.A modular textile-integrated sensing system was developed and performance and capacity measures were proposed and clinically tested in stroke subject.Telemonitoring facilities were developed and tested. In the last stage of the project, the system will be tested during daily-life
    • …
    corecore