7,970 research outputs found

    Geometric changes allow normal ejection fraction despite depressed myocardial shortening in hypertensive left ventricular hypertrophy

    Get PDF
    Objectives.This study of hypertensive left ventricular hypertrophy 1) assessed myocardial shortening in both the circumferential and long-axis planes, and 2) investigated the relation between geometry and systolic function.Background.In hypertensive left ventricular hypertrophy, whole-heart studies have suggested normal systolic function on the basis of ejection fraction-systolic stress relations. By contrast, isolated muscle data show that contractility is depressed. It occurred to us that this discrepancy could be related to geometric factors (relative wall thickness).Methods.We studied 43 patients with hypertensive left ventricular hypertrophy and normal ejection fraction (mean ± SD 69 ± 13%) and 50 clinically normal subjects. By echocardiography, percent myocardial shortening was measured in two orthogonal planes; circumferential shortening was measured at the endocardium and at the midwall, and long-axis shortening was derived from mitral annular motion (apical four-chamber view). Circumferential shortening was related to end-systolic circumferential stress and long-axis shortening to meridional stress.Results.Endocardial circumferential shortening was higher than normal (42 ± 10% vs. 37 ± 5%, p < 0.01) and midwall circumferential shortening lower than normal in the left ventricular hypertrophy group (18 ± 3% vs. 21 ± 3%, p < 0.01). Differences between endocardial and midwall circumferential shortening are directly related to differences in relative wall thickness. Long-axis shortening was also depressed in the left ventricular hypertrophy group (18 ± 6% in the left ventricular hypertrophy group, 21 ± 5% in control subjects, p < 0.05). Midwall circumferential shortening and end-systolic circumferential stress relations in the normal group showed the expected inverse relation; those for ∼33% of the left ventricular hypertrophy group were >2 SD of normal relations, indicating depressed myocardial function. There was no significant relation between long-axis shortening and meridional stress, indicating that factors other than afterload influence shortening in this plane.Conclusions.High relative wall thickness allows preserved ejection fraction and normal circumferential shortening at the endocardium despite depressed myocardial shortening in two orthogonal planes

    Very long optical path-length from a compact multi-pass cell

    Full text link
    The multiple-pass optical cell is an important tool for laser absorption spectroscopy and its many applications. For most practical applications, such as trace-gas detection, a compact and robust design is essential. Here we report an investigation into a multi-pass cell design based on a pair of cylindrical mirrors, with a particular focus on achieving very long optical paths. We demonstrate a path-length of 50.31 m in a cell with 40 mm diameter mirrors spaced 88.9 mm apart - a 3-fold increase over the previously reported longest path-length obtained with this type of cell configuration. We characterize the mechanical stability of the cell and describe the practical conditions necessary to achieve very long path-lengths

    An inquiry-based learning approach to teaching information retrieval

    Get PDF
    The study of information retrieval (IR) has increased in interest and importance with the explosive growth of online information in recent years. Learning about IR within formal courses of study enables users of search engines to use them more knowledgeably and effectively, while providing the starting point for the explorations of new researchers into novel search technologies. Although IR can be taught in a traditional manner of formal classroom instruction with students being led through the details of the subject and expected to reproduce this in assessment, the nature of IR as a topic makes it an ideal subject for inquiry-based learning approaches to teaching. In an inquiry-based learning approach students are introduced to the principles of a subject and then encouraged to develop their understanding by solving structured or open problems. Working through solutions in subsequent class discussions enables students to appreciate the availability of alternative solutions as proposed by their classmates. Following this approach students not only learn the details of IR techniques, but significantly, naturally learn to apply them in solution of problems. In doing this they not only gain an appreciation of alternative solutions to a problem, but also how to assess their relative strengths and weaknesses. Developing confidence and skills in problem solving enables student assessment to be structured around solution of problems. Thus students can be assessed on the basis of their understanding and ability to apply techniques, rather simply their skill at reciting facts. This has the additional benefit of encouraging general problem solving skills which can be of benefit in other subjects. This approach to teaching IR was successfully implemented in an undergraduate module where students were assessed in a written examination exploring their knowledge and understanding of the principles of IR and their ability to apply them to solving problems, and a written assignment based on developing an individual research proposal

    Competition Between Antiferromagnetic Order and Spin-Liquid Behavior in the Two-Dimensional Periodic Anderson Model at Half-Filling

    Full text link
    We study the two-dimensional periodic Anderson model at half-filling using quantum Monte Carlo (QMC) techniques. The ground state undergoes a magnetic order-disorder transition as a function of the effective exchange coupling between the conduction and localized bands. Low-lying spin and charge excitations are determined using the maximum entropy method to analytically continue the QMC data. At finite temperature we find a competition between the Kondo effect and antiferromagnetic order which develops in the localized band through Ruderman-Kittel-Kasuya-Yosida interactions.Comment: Revtex 3.0, 10 pages + 5 figures, UCSBTH-94-2

    Phonon-like and single particle dynamics in liquid lithium

    Full text link
    The dynamic structure factor, S(Q,E), of liquid lithium (T=475 K) has been determined by inelastic x-ray scattering (IXS) in the momentum transfer region (Q = 1.4-110 nm-1). These data allow to observe how, in a simple liquid, a phonon-like collective mode evolves towards the single particle dynamics. As a function of Q, one finds: i) at low Q's, a sound mode with a positive dispersion of the sound velocity, ii) at intermediate Q's, excitations whose energy oscillates similarly to phonons in the crystal Brillouin zones, and iii) at high Q's, the S(Q,E) approaches a Gaussian shape, indicating that the single particle dynamics has been reached.Comment: 3 pages and 5 figure

    Frustration induced Raman scattering in CuGeO_3

    Full text link
    We present experimental data for the Raman intensity in the spin-Peierls compound CuGeO_3 and theoretical calculations from a one-dimensional frustrated spin model. The theory is based on (a) exact diagonalization and (b) a recently developed solitonic mean field theory. We find good agreement between the 1D-theory in the homogeneous phase and evidence for a novel dimerization of the Raman operator in the spin-Peierls state. Finally we present evidence for a coupling between the interchain exchange, the spin-Peierls order parameter and the magnetic excitations along the chains.Comment: Phys. Rev. B, Rapid Comm, in Pres

    Investigating the emission characteristics of single crystal YAG when activated by high power laser beams

    Get PDF
    © The Author(s) 2016. Limitations associated with light emitting diodes (LEDs) operating under high current densities due to the efficiency droop has created a need to look for alternative light sources; here we report investigations on the potential of laser diodes (LDs) for high brightness lighting solutions. High power laser diodes require phosphor targets with certain performance criteria such as high thermal conductivity, efficiency and structural geometry. Here we examine the possibility of using single crystal YAG:Ce phosphor materials as potential targets for generation of light via laser diodes. We report on the emission properties of the crystals with different sizes and examine the effect of laser beam incident angle incident on crystal target emission
    corecore