14,917 research outputs found
Galaxies with Spiral Structure up to z = 0.87 --Limits on M/L and the Stellar Velocity Dispersion
We consider seven distant galaxies with clearly evident spiral structure from
HST images. Three of these were chosen from Vogt et al. (1996) (VFP) and have
measured rotational velocities. Five were chosen from the Medium Deep Survey
and are studied in Sarajedini et al. 1996 (SGGR), and one galaxy is found in
both papers. We place upper limits on their mass-to-light ratios (M/L) by
computing M/L_B for a maximal disk. We find that these galaxies have maximal
disk mass-to-light ratios M/L_B = 1.5 - 3.5 M_sol/L_Bsol at the low end, but
within the range seen in nearby galaxies. The mass-to-light ratios are low
enough to suggest that the galaxies contain a young, rapidly formed stellar
population.
By using a Toomre stability criterion for formation of spiral structure, we
place constraints on the ratio of M/L to the stellar velocity dispersion. If
these galaxies have maximal disks they would have to be nearly unstable so as
to have small enough velocity dispersions that their disks are not
unrealistically thick. This suggests that there is a substantial amount of dark
matter present in the luminous regions of the galaxy.Comment: AAS Latex + PS Figure, accepted for publication in A
Adaptive mutation using statistics mechanism for genetic algorithms
Copyright @ 2004 Springer-Verla
Scalar and vector decomposition of the nucleon self-energy in the relativistic Brueckner approach
We investigate the momentum dependence of the nucleon self-energy in nuclear
matter. We apply the relativistic Brueckner-Hartree-Fock approach and adopt the
Bonn A potential. A strong momentum dependence of the scalar and vector
self-energy components can be observed when a commonly used pseudo-vector
choice for the covariant representation of the T-matrix is applied. This
momentum dependence is dominated by the pion exchange. We discuss the problems
of this choice and its relations to on-shell ambiguities of the T-matrix
representation. Starting from a complete pseudo-vector representation of the
T-matrix, which reproduces correctly the pseudo-vector pion-exchange
contributions at the Hartree-Fock level, we observe a much weaker momentum
dependence of the self-energy. This fixes the range of the inherent uncertainty
in the determination of the scalar and vector self-energy components. Comparing
to other work, we find that extracting the self-energy components by a fit to
the single particle potential leads to even more ambiguous results.Comment: 35 pages RevTex, 7 PS figures, replaced by a revised and extended
versio
Structure of Disk Dominated Galaxies I. Bulge/Disk Parameters, Simulations, and Secular Evolution
(Abridged) A robust analysis of galaxy structural parameters, based on the
modeling of bulge and disk brightnesses in the BVRH bandpasses, is presented
for 121 face-on and moderately inclined late-type spirals. Each surface
brightness (SB) profile is decomposed into a sum of a generalized Sersic bulge
and an exponential disk. The reliability and limitations of our bulge-to-disk
(B/D) decompositions are tested with extensive simulations of galaxy brightness
profiles (1D) and images (2D). Galaxy types are divided into 3 classes
according to their SB profile shapes; Freeman Type-I and Type-II, and a third
``Transition'' class for galaxies whose profiles change from Type-II in the
optical to Type-I in the infrared. We discuss possible interpretations of
Freeman Type-II profiles. The Sersic bulge shape parameter for nearby Type-I
late-type spirals shows a range between n=0.1-2 but, on average, the underlying
surface density profile for the bulge and disk of these galaxies is adequately
described by a double-exponential distribution. We confirm a coupling between
the bulge and disk with a scale length ratio r_e/h=0.22+/-0.09, or
h_bulge/h_disk=0.13+/-0.06 for late-type spirals, in agreement with recent
N-body simulations of disk formation and models of secular evolution. This
ratio increases from ~0.20 for late-type spirals to ~0.24 for earlier types.
The similar scaling relations for early and late-type spirals suggest
comparable formation and/or evolution scenarios for disk galaxies of all Hubble
types.Comment: 78 pages with 23 embedded color figures + tables of galaxy structural
parameters. Accepted for publication in the Astrophysical Journal. The
interested reader is strongly encouraged to ignore some of the low res
figures within; instead, download the high resolution version from
http://www.astro.ubc.ca/people/courteau/public/macarthur02_disks.ps.g
Quantum partition noise of photo-created electron-hole pairs
We show experimentally that even when no bias voltage is applied to a quantum
conductor, the electronic quantum partition noise can be investigated using GHz
radiofrequency irradiation of a reservoir. Using a Quantum Point Contact
configuration as the ballistic conductor we are able to make an accurate
determination of the partition noise Fano factor resulting from the
photo-assisted shot noise. Applying both voltage bias and rf irradiation we are
able to make a definitive quantitative test of the scattering theory of
photo-assisted shot noise.Comment: 4 pages, 4 figure
Relativistic Brueckner-Hartree-Fock calculations with explicit intermediate negative energy states
In a relativistic Brueckner-Hartree-Fock calculation we include explicit
negative-energy states in the two-body propagator. This is achieved by using
the Gross spectator-equation, modified by medium effects. Qualitatively our
results compare well with other RBHF calculations. In some details significant
differences occur, e.g, our equation of state is stiffer and the momentum
dependence of the self-energy components is stronger than found in a reference
calculation without intermediate negative energy states.Comment: 13 pages Revtex, 5 figures included seperatel
Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin
The current generation of large-scale hydrological models does not include a groundwater flow component. Large-scale groundwater models, involving aquifers and basins of multiple countries, are still rare mainly due to a lack of hydro-geological data which are usually only available in developed countries. In this study, we propose a novel approach to construct large-scale groundwater models by using global datasets that are readily available. As the test-bed, we use the combined Rhine-Meuse basin that contains groundwater head data used to verify the model output. We start by building a distributed land surface model (30 arc-second resolution) to estimate groundwater recharge and river discharge. Subsequently, a MODFLOW transient groundwater model is built and forced by the recharge and surface water levels calculated by the land surface model. Results are promising despite the fact that we still use an offline procedure to couple the land surface and MODFLOW groundwater models (i.e. the simulations of both models are separately performed). The simulated river discharges compare well to the observations. Moreover, based on our sensitivity analysis, in which we run several groundwater model scenarios with various hydro-geological parameter settings, we observe that the model can reasonably well reproduce the observed groundwater head time series. However, we note that there are still some limitations in the current approach, specifically because the offline-coupling technique simplifies the dynamic feedbacks between surface water levels and groundwater heads, and between soil moisture states and groundwater heads. Also the current sensitivity analysis ignores the uncertainty of the land surface model output. Despite these limitations, we argue that the results of the current model show a promise for large-scale groundwater modeling practices, including for data-poor environments and at the global scale
Imprints of Environment on Cluster and Field Late-type Galaxies at z~1
We present a comparison of late-type galaxies (Sa and later) in intermediate
redshift clusters and the field using ACS imaging of four cluster fields:
CL0152-1357, CL1056-0337 (MS1054), CL1604+4304, and CL1604+4321. Concentration,
asymmetry, and clumpiness parameters are calculated for each galaxy in blue
(F606W or F625W) and red (F775W or F814W) filters. Galaxy half-light radii,
disk scale lengths, color gradients, and overall color are compared. We find
marginally significant differences in the asymmetry distributions of spiral and
irregular galaxies in the X-ray luminous and X-ray faint clusters. The massive
clusters contain fewer galaxies with large asymmetries. The physical sizes of
the cluster and field populations are similar; no significant differences are
found in half-light radii or disk scale lengths. The most significant
difference is in rest-frame color. Late-type cluster galaxies are
significantly redder, magnitudes at rest-frame , than their
field counterparts. Moreover, the intermediate-redshift cluster galaxies tend
to have blue inward color gradients, in contrast to the field galaxies, but
similar to late-type galaxies in low redshift clusters. These blue inward color
gradients are likely to be the result of enhanced nuclear star formation rates
relative to the outer disk. Based on the significant rest-frame color
difference, we conclude that late-type cluster members at are not a
pristine infalling field population; some difference in past and/or current
star formation history is already present. This points to high redshift
``groups'', or filaments with densities similar to present-day groups, as the
sites where the first major effects of environment are imprinted.Comment: updated titl
Density fluctuations and single-particle dynamics in liquid lithium
The single-particle and collective dynamical properties of liquid lithium
have been evaluated at several thermodynamic states near the triple point. This
is performed within the framework of mode-coupling theory, using a
self-consistent scheme which, starting from the known static structure of the
liquid, allows the theoretical calculation of several dynamical properties.
Special attention is devoted to several aspects of the single-particle
dynamics, which are discussed as a function of the thermodynamic state. The
results are compared with those of Molecular Dynamics simulations and other
theoretical approaches.Comment: 31 pages (in preprint format), 14 figures. Submitted to Phys. Rev.
- …