210 research outputs found

    Photoassociation spectroscopy of cold alkaline earth atoms near the intercombination line

    Full text link
    The properties of photoassociation (PA) spectra near the intercombination line (the weak transition between 1S0^{1}S_{0} and 3P1^{3}P_{1} states) of group II atoms are theoretically investigated. As an example we have carried out a calculation for Calcium atoms colliding at ultra low temperatures of 1 mK, 1 μ\muK, and 1 nK. Unlike in most current photoassociation spectroscopy the Doppler effect can significantly affect the shape of the investigated lines. Spectra are obtained using Ca--Ca and Ca--Ca∗^* short-range {\it ab initio} potentials and long-range van der Waals and resonance dipole potentials. The similar van der Waals coefficients of ground 1S0+1S0^{1}S_{0} + ^{1}S_{0} and excited 1S0+3P1^{1}S_{0} + ^{3}P_{1} states cause the PA to differ greatly from those of strong, allowed transitions with resonant dipole interactions. The density of spectral lines is lower, the Condon points are at relatively short range, and the reflection approximation for the Franck-Condon factors is not applicable, and the spontaneous decay to bound ground-state molecules is efficient. Finally, the possibility of efficient production of cold molecules is discussed

    Comparison of numerical methods for the calculation of cold atom collisions

    Full text link
    Three different numerical techniques for solving a coupled channel Schroedinger equation are compared. This benchmark equation, which describes the collision between two ultracold atoms, consists of two channels, each containing the same diagonal Lennard-Jones potential, one of positive and the other of negative energy. The coupling potential is of an exponential form. The methods are i) a recently developed spectral type integral equation method based on Chebyshev expansions, ii) a finite element expansion, and iii) a combination of an improved Numerov finite difference method and a Gordon method. The computing time and the accuracy of the resulting phase shift is found to be comparable for methods i) and ii), achieving an accuracy of ten significant figures with a double precision calculation. Method iii) achieves seven significant figures. The scattering length and effective range are also obtained.Comment: 22 pages, 3 figures, submitted to J. Comput. Phys. documentstyle [thmsa,sw20aip]{article} in .te

    Chaos synchronization in gap-junction-coupled neurons

    Full text link
    Depending on temperature the modified Hodgkin-Huxley (MHH) equations exhibit a variety of dynamical behavior including intrinsic chaotic firing. We analyze synchronization in a large ensemble of MHH neurons that are interconnected with gap junctions. By evaluating tangential Lyapunov exponents we clarify whether synchronous state of neurons is chaotic or periodic. Then, we evaluate transversal Lyapunov exponents to elucidate if this synchronous state is stable against infinitesimal perturbations. Our analysis elucidates that with weak gap junctions, stability of synchronization of MHH neurons shows rather complicated change with temperature. We, however, find that with strong gap junctions, synchronous state is stable over the wide range of temperature irrespective of whether synchronous state is chaotic or periodic. It turns out that strong gap junctions realize the robust synchronization mechanism, which well explains synchronization in interneurons in the real nervous system.Comment: Accepted for publication in Phys. Rev.

    Current-induced vortex dynamics in Josephson-junction arrays: Imaging experiments and model simulations

    Get PDF
    We study the dynamics of current-biased Josephson-junction arrays with a magnetic penetration depth smaller than the lattice spacing. We compare the dynamics imaged by low-temperature scanning electron microscopy to the vortex dynamics obtained from model calculations based on the resistively-shunted junction model, in combination with Maxwell's equations. We find three bias current regions with fundamentally different array dynamics. The first region is the subcritical region, i.e. below the array critical current I_c. The second, for currents I above I_c, is a "vortex region", in which the response is determined by the vortex degrees of freedom. In this region, the dynamics is characterized by spatial domains where vortices and antivortices move across the array in opposite directions in adjacent rows and by transverse voltage fluctuations. In the third, for still higher currents, the dynamics is dominated by coherent-phase motion, and the current-voltage characteristics are linear.Comment: 10 pages, with eps figures. To appear in Phys. Rev.

    Strongly enhanced inelastic collisions in a Bose-Einstein condensate near Feshbach resonances

    Full text link
    The properties of Bose-Einstein condensed gases can be strongly altered by tuning the external magnetic field near a Feshbach resonance. Feshbach resonances affect elastic collisions and lead to the observed modification of the scattering length. However, as we report here, this is accompanied by a strong increase in the rate of inelastic collisions. The observed three-body loss rate in a sodium Bose-Einstein condensation increased when the scattering length was tuned to both larger or smaller values than the off-resonant value. This observation and the maximum measured increase of the loss rate by several orders of magnitude are not accounted for by theoretical treatments. The strong losses impose severe limitations for using Feshbach resonances to tune the properties of Bose-Einstein condensates. A new Feshbach resonance in sodium at 1195 G was observed.Comment: 4 pages, 3 figure

    Three-body recombination in Bose gases with large scattering length

    Full text link
    An effective field theory for the three-body system with large scattering length is applied to three-body recombination to a weakly-bound s-wave state in a Bose gas. Our model independent analysis demonstrates that the three-body recombination constant alpha is not universal, but can take any value between zero and 67.9 \hbar a^4/m, where a is the scattering length. Other low-energy three-body observables can be predicted in terms of a and alpha. Near a Feshbach resonance, alpha should oscillate between those limits as the magnetic field B approaches the point where a -> infinity. In any interval of B over which a increases by a factor of 22.7, alpha should have a zero.Comment: 8 pages, RevTex, 3 postscript figures, uses epsf.sty, rotate.sty, references added, discussion improve

    Observation of Feshbach resonances in an ultracold gas of 52{}^{52}Cr

    Full text link
    We have observed Feshbach resonances in elastic collisions between ultracold 52{}^{52}Cr atoms. This is the first observation of collisional Feshbach resonances in an atomic species with more than one valence electron. The zero nuclear spin of 52{}^{52}Cr and thus the absence of a Fermi-contact interaction leads to regularly-spaced resonance sequences. By comparing resonance positions with multi-channel scattering calculations we determine the s-wave scattering length of the lowest 2S+1Σg+^{2S+1}\Sigma_{g}^{+} potentials to be \unit[112(14)]{a_0}, \unit[58(6)]{a_0} and -\unit[7(20)]{a_0} for S=6, 4, and 2, respectively, where a_{0}=\unit[0.0529]{nm}.Comment: 4 pages, 2 figures, 1 tabl

    Quantum Logic Gates in Optical Lattices

    Full text link
    We propose a new system for implementing quantum logic gates: neutral atoms trapped in a very far-off-resonance optical lattice. Pairs of atoms are made to occupy the same well by varying the polarization of the trapping lasers, and then a near-resonant electric dipole is induced by an auxiliary laser. A controlled-NOT can be implemented by conditioning the target atomic resonance on a resolvable level shift induced by the control atom. Atoms interact only during logical operations, thereby suppressing decoherence.Comment: Revised version, To appear in Phys. Rev. Lett. Three separate postscript figure
    • …
    corecore