26 research outputs found

    Rules for Computing Symmetry, Density and Stoichiometry in a Quasi-Unit-Cell Model of Quasicrystals

    Full text link
    The quasi-unit cell picture describes the atomic structure of quasicrystals in terms of a single, repeating cluster which overlaps neighbors according to specific overlap rules. In this paper, we discuss the precise relationship between a general atomic decoration in the quasi-unit cell picture atomic decorations in the Penrose tiling and in related tiling pictures. Using these relations, we obtain a simple, practical method for determining the density, stoichiometry and symmetry of a quasicrystal based on the atomic decoration of the quasi-unit cell taking proper account of the sharing of atoms between clusters.Comment: 14 pages, 8 figure

    Cluster Model of Decagonal Tilings

    Full text link
    A relaxed version of Gummelt's covering rules for the aperiodic decagon is considered, which produces certain random-tiling-type structures. These structures are precisely characterized, along with their relationships to various other random tiling ensembles. The relaxed covering rule has a natural realization in terms of a vertex cluster in the Penrose pentagon tiling. Using Monte Carlo simulations, it is shown that the structures obtained by maximizing the density of this cluster are the same as those produced by the corresponding covering rules. The entropy density of the covering ensemble is determined using the entropic sampling algorithm. If the model is extended by an additional coupling between neighboring clusters, perfectly ordered structures are obtained, like those produced by Gummelt's perfect covering rules.Comment: 10 pages, 20 figures, RevTeX; minor changes; to be published in Phys. Rev.

    Some Recent Results on Pair Correlation Functions and Susceptibilities in Exactly Solvable Models

    Full text link
    Using detailed exact results on pair-correlation functions of Z-invariant Ising models, we can write and run algorithms of polynomial complexity to obtain wavevector-dependent susceptibilities for a variety of Ising systems. Reviewing recent work we compare various periodic and quasiperiodic models, where the couplings and/or the lattice may be aperiodic, and where the Ising couplings may be either ferromagnetic, or antiferromagnetic, or of mixed sign. We present some of our results on the square-lattice fully-frustrated Ising model. Finally, we make a few remarks on our recent works on the pentagrid Ising model and on overlapping unit cells in three dimensions and how these works can be utilized once more detailed results for pair correlations in, e.g., the eight-vertex model or the chiral Potts model or even three-dimensional Yang-Baxter integrable models become available.Comment: LaTeX2e using iopart.cls, 10 pages, 5 figures (5 eps files), Dunk Island conference in honor of 60th birthday of A.J. Guttman

    Quasicrystals: Atomic coverings and windows are dual projects

    Full text link
    In the window approach to quasicrystals, the atomic position space E_parallel is embedded into a space E^n = E_parallel + E_perp. Windows are attached to points of a lattice Lambda \in E^n. For standard 5fold and icosahedral tiling models, the windows are perpendicular projections of dual Voronoi and Delone cells from Lambda. Their cuts by the position space E_parallel mark tiles and atomic positions. In the alternative covering approach, the position space is covered by overlapping copies of a quasi-unit cell which carries a fixed atomic configuration. The covering and window approach to quasicrystals are shown to be dual projects: D- and V- clusters are defined as projections to position space E_parallel of Delone or Voronoi cells. Decagonal V-clusters in the Penrose tiling, related to the decagon covering, and two types of pentagonal D-clusters in the triangle tiling of 5fold point symmetry with their windows are analyzed. They are linked, cover position space and have definite windows. For functions compatible with the tilings they form domains of definition. For icosahedral tilings the V-clusters are Kepler triacontahedra, the D-clusters are two icosahedra and one dodecahedron.Comment: 15 pages, 7 figures, see also http://homepages.uni-tuebingen.de/peter.kramer/ corrections, appendix A,B ne

    Icosahedral multi-component model sets

    Full text link
    A quasiperiodic packing Q of interpenetrating copies of C, most of them only partially occupied, can be defined in terms of the strip projection method for any icosahedral cluster C. We show that in the case when the coordinates of the vectors of C belong to the quadratic field Q[\sqrt{5}] the dimension of the superspace can be reduced, namely, Q can be re-defined as a multi-component model set by using a 6-dimensional superspace.Comment: 7 pages, LaTeX2e in IOP styl

    A quasi-unit cell model for Al-Ni-Co Ideal Quasicrystal based on clusters with broken 10-fold symmetry

    Full text link
    We present new evidence supporting the quasi-unit cell description of the Al72Ni20Co8Al_{72}Ni_{20}Co_{8} decagonal quasicrystal which shows that the solid is composed of repeating, overlapping decagonal cluster columns with broken 10-fold symmetry. We propose an atomic model which gives a significantly improved fit to electron microscopy experiments compared to a previous proposal by us and to alternative proposals with 10-fold symmetric clusters.Comment: 4 pages, 4 eps figures, use epsfig.sty and revtex revised text and figure

    Ferroelectrics

    No full text
    corecore