254 research outputs found

    Use of in vivo imaging to monitor the progression of experimental mouse cytomegalovirus infection in neonates.

    Get PDF
    Human Cytomegalovirus (HCMV or HHV-5) is a life-threatening pathogen in immune-compromised individuals. Upon congenital or neonatal infection, the virus can infect and replicate in the developing brain, which may induce severe neurological damage, including deafness and mental retardation. Despite the potential severity of the symptoms, the therapeutic options are limited by the unavailability of a vaccine and the absence of a specific antiviral therapy. Furthermore, a precise description of the molecular events occurring during infection of the central nervous system (CNS) is still lacking since observations mostly derive from the autopsy of infected children. Several animal models, such as rhesus macaque CMV, have been developed and provided important insights into CMV pathogenesis in the CNS. However, despite its evolutionary proximity with humans, this model was limited by the intracranial inoculation procedure used to infect the animals and consistently induce CNS infection. Furthermore, ethical considerations have promoted the development of alternative models, among which neonatal infection of newborn mice with mouse cytomegalovirus (MCMV) has recently led to significant advances. For instance, it was reported that intraperitoneal injection of MCMV to Balb/c neonates leads to infection of neurons and glial cells in specific areas of the brain. These findings suggested that experimental inoculation of mice might recapitulate the deficits induced by HCMV infection in children. Nevertheless, a dynamic analysis of MCMV infection of neonates is difficult to perform because classical methodology requires the sacrifice of a significant number of animals at different time points to analyze the viral burden and/or immune-related parameters. To circumvent this bottleneck and to enable future investigations of rare mutant animals, we applied in vivo imaging technology to perform a time-course analysis of the viral dissemination in the brain upon peripheral injection of a recombinant MCMV expressing luciferase to C57Bl/6 neonates.journal articleresearch support, non-u.s. gov'tvideo-audio media2013 Jul 062013 07 06importe

    Expression and nuclear translocation of the rel/NF-kappa B-related morphogen dorsal during the immune response of Drosophila

    Get PDF
    The rel/NF-kappa B-related morphogen dorsal is a maternally expressed gene which is involved in the control of the dorso-ventral axis during early embryogenesis of Drosophila. We show that this gene is also expressed in the fat body of larvae and adults of Drosophila as well as in a tumorous blood cell line: its expression is noticeably enhanced upon bacterial (or lipopolysaccharide) challenge. This challenge also induces within 15-30 min a nuclear translocation of the dorsal protein. The genes encoding inducible antibacterial peptides in Drosophila contain kappa B-related nucleotide sequences and we show that the dorsal protein can bind to such motifs and sequence-specifically transactivate a reporter gene in co-transfection experiments with a Drosophila cell line. However, in dl1 mutants, in the absence of dorsal protein, the genes encoding antibacterial peptides retain their inducibility, suggesting a multifactorial control. The results indicate that in addition to its role in embryogenesis, dorsal is involved in the immune response of Drosophila. They also strengthen the analogy between the mammalian acute phase response and the insect immune response

    Insect immunity: the diptericin promoter contains multiple functional regulatory sequences homologous to mammalian acute-phase response elements

    Get PDF
    We are using the diptericin gene as a model system to study the control of expression of the genes encoding antibacterial peptides during the Drosophila immune reaction. In order to investigate the putative regulatory regions in the diptericin promoter, we performed DNaseI footprinting experiments combined with gel-shift assays in two inducible systems: the larval fat body and a tumorous Drosophila blood cell line. Our results confirm the importance of kappa B-like elements previously described in the immune response of insects and reveal for the first time the involvement of other regions containing sequences homologous to mammalian acute-phase response elements

    The miR-17~92 Cluster: A Key Player in the Control of Inflammation during Rheumatoid Arthritis.:

    Get PDF
    MicroRNAs (miRNAs) are now recognized as essential regulators of gene expression in plants and animals. They potentially modulate the expression of multiple genes thereby enabling homeostatic settings in physiological conditions. Their role is also increasingly considered in many diseases in which deregulated epigenetic mechanisms induce aberrant gene expression. Work conducted in our laboratory has recently led to the identification of miRNAs essential for the control of inflammatory reactions that occur during rheumatoid arthritis (RA). In this review, we describe two such miRNAs, members of the miR-17 ∼ 92 cluster, which has been previously implicated in cancer. Based on our data and on predicted miRNA:mRNA interactions, we will extrapolate a model whereby the miR-17 ∼ 92 cluster appears as a global regulator of the Apoptosis Signal-Regulating Kinase 1 signalosome, a central actor in the inflammatory pathways activated during RA. We will also discuss the potential therapeutic outcomes emerging from this model

    Activation of Human Stearoyl-Coenzyme A Desaturase 1 Contributes to the Lipogenic Effect of PXR in HepG2 Cells

    Get PDF
    The pregnane X receptor (PXR) was previously known as a xenobiotic receptor. Several recent studies suggested that PXR also played an important role in lipid homeostasis but the underlying mechanism remains to be clearly defined. In this study, we found that rifampicin, an agonist of human PXR, induced lipid accumulation in HepG2 cells. Lipid analysis showed the total cholesterol level increased. However, the free cholesterol and triglyceride levels were not changed. Treatment of HepG2 cells with rifampicin induced the expression of the free fatty acid transporter CD36 and ABCG1, as well as several lipogenic enzymes, including stearoyl-CoA desaturase-1 (SCD1), long chain free fatty acid elongase (FAE), and lecithin-cholesterol acyltransferase (LCAT), while the expression of acyl:cholesterol acetyltransferase(ACAT1) was not affected. Moreover, in PXR over-expressing HepG2 cells (HepG2-PXR), the SCD1 expression was significantly higher than in HepG2-Vector cells, even in the absence of rifampicin. Down-regulation of PXR by shRNA abolished the rifampicin-induced SCD1 gene expression in HepG2 cells. Promoter analysis showed that the human SCD1 gene promoter is activated by PXR and a novel DR-7 type PXR response element (PXRE) response element was located at -338 bp of the SCD1 gene promoter. Taken together, these results indicated that PXR activation promoted lipid synthesis in HepG2 cells and SCD1 is a novel PXR target gene. © 2013 Zhang et al

    Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila

    Get PDF
    In addition to its function in embryonic development, the NF-kappa B/rel-related gene dorsal (dl) of Drosophila is expressed in larval and adult fat body where its RNA expression is enhanced upon injury. Injury also leads to a rapid nuclear translocation of dl from the cytoplasm in fat body cells. Here we present data which strongly suggest that the nuclear localization of dl during the immune response is controlled by the Toll signaling pathway, comprising gene products that participate in the intracellular part of the embryonic dorsoventral pathway. We also report that in mutants such as Toll or cactus, which exhibit melanotic tumor phenotypes, dl is constitutively nuclear. Together, these results point to a potential link between the Toll signaling pathway and melanotic tumor induction. Although dl has been shown previously to bind to kappa B-related motifs within the promoter of the antibacterial peptide coding gene diptericin, we find that injury-induced expression of diptericin can occur in the absence of dl. Furthermore, the melanotic tumor phenotype of Toll and cactus is not dl dependent. These data underline the complexity of the Drosophila immune response. Finally, we observed that like other rel proteins, dl can control the level of its own transcription
    • …
    corecore