66 research outputs found

    Collimation of a spherical collisionless particles stream in Kerr space-time

    Full text link
    We examine the propagation of collisionless particles emitted from a spherical shell to infinity. The number distribution at infinity, calculated as a function of the polar angle, exhibits a small deviation from uniformity. The number of particles moving from the polar region toward the equatorial plane is slightly larger than that of particles in the opposite direction, for an emission radius >4.5M > 4.5M in extreme Kerr space-time. This means that the black hole spin exerts an anti-collimation effect on the particles stream propagating along the rotation axis. We also confirm this property in the weak field limit. The quadrupole moment of the central object produces a force toward the equatorial plane. For a smaller emission radius r<4.5Mr<4.5M, the absorption of particles into the black hole, the non-uniformity and/or the anisotropy of the emission distribution become much more important.Comment: 11 pages, 8 figures; accepted for publication in CQ

    Scaling dependence on the fluid viscosity ratio in the selective withdrawal transition

    Get PDF
    In the selective withdrawal experiment fluid is withdrawn through a tube with its tip suspended a distance S above a two-fluid interface. At sufficiently low withdrawal rates, Q, the interface forms a steady state hump and only the upper fluid is withdrawn. When Q is increased (or S decreased), the interface undergoes a transition so that the lower fluid is entrained with the upper one, forming a thin steady-state spout. Near this transition the hump curvature becomes very large and displays power-law scaling behavior. This scaling allows for steady-state hump profiles at different flow rates and tube heights to be scaled onto a single similarity profile. I show that the scaling behavior is independent of the viscosity ratio.Comment: 33 Pages, 61 figures, 1 tabl

    A study of the angular size-redshift relation for models in which Λ\Lambda decays as the energy density

    Full text link
    By modifying the Chen and Wu ansatz, we have investigated some Friedmann models in which Λ\Lambda varies as ρ\rho. In order to test the consistency of the models with observations, we study the angular size - redshift relation for 256 ultracompact radio sources selected by Jackson and Dodgson. The angular sizes of these sources were determined by using very long-baseline interferometry in order to avoid any evolutionary effects. The models fit the data very well and require an accelerating universe with a positive cosmological constant. Open, flat and closed models are almost equally probable, though the open model provides a comparatively better fit to the data. The models are found to have intermediate density and imply the existence of dark matter, though not as much as in the canonical Einstein-de Sitter model.Comment: LaTex, 15 pages including 2 figures (Revised version appeared in CQG

    Dissipative cosmological solutions

    Full text link
    The exact general solution to the Einstein equations in a homogeneous Universe with a full causal viscous fluid source for the bulk viscosity index m=1/2m=1/2 is found. We have investigated the asymptotic stability of Friedmann and de Sitter solutions, the former is stable for m1/2m\ge 1/2 and the latter for m1/2m\le 1/2. The comparison with results of the truncated theory is made. For m=1/2m=1/2, it was found that families of solutions with extrema no longer remain in the full case, and they are replaced by asymptotically Minkowski evolutions. These solutions are monotonic.Comment: 17 pages, LaTeX 2.09, 1 figure. To be published in Classical and Quantum Gravit

    Cosmic anti-friction and accelerated expansion

    Get PDF
    We explain an accelerated expansion of the present universe, suggested from observations of supernovae of type Ia at high redshift, by introducing an anti-frictional force that is self-consistently exerted on the particles of the cosmic substratum. Cosmic anti-friction, which is intimately related to ``particle production'', is shown to give rise to an effective negative pressure of the cosmic medium. While other explanations for an accelerated expansion (cosmological constant, quintessence) introduce a component of dark energy besides ``standard'' cold dark matter (CDM) we resort to a phenomenological one-component model of CDM with internal self-interactions. We demonstrate how the dynamics of the LambdaCDM model may be recovered as a special case of cosmic anti-friction. We discuss the connection with two-component models and obtain an attractor behavior for the ratio of the energy densities of both components which provides a possible phenomenological solution to the coincidence problem.Comment: 19 pages, 7 (3 new) figures, new derivation of kinetic equation with force term, accepted by Physical Review

    Temperature Evolution Law of Imperfect Relativistic Fluids

    Full text link
    The first-order general relativistic theory of a generic dissipative (heat-conducting, viscous, particle-creating) fluid is rediscussed from a unified covariant frame-independent point of view. By generalizing some previous works in the literature, we derive a formula for the temperature variation rate, which is valid both in Eckart's (particle) and in the Landau-Lifshitz (energy) frames. Particular attention is paid to the case of gravitational particle creation and its possible cross-effect with the bulk viscosity mechanism.Comment: 14 pages, no figure, revte

    Entropy-Corrected Holographic Dark Energy

    Full text link
    The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to loop quantum gravity or other reasons. With the modified entropy-area relation, we propose the so-called ``entropy-corrected holographic dark energy'' (ECHDE) in the present work. We consider many aspects of ECHDE and find some interesting results. In addition, we briefly consider the so-called ``entropy-corrected agegraphic dark energy'' (ECADE).Comment: 11 pages, 2 tables, revtex4; v2: references adde

    Accelerating Cold Dark Matter Cosmology (ΩΛ0\Omega_{\Lambda}\equiv 0)

    Full text link
    A new kind of accelerating flat model with no dark energy that is fully dominated by cold dark matter (CDM) is investigated. The number of CDM particles is not conserved and the present accelerating stage is a consequence of the negative pressure describing the irreversible process of gravitational particle creation. A related work involving accelerating CDM cosmology has been discussed before the SNe observations [Lima, Abramo & Germano, Phys. Rev. D53, 4287 (1996)]. However, in order to have a transition from a decelerating to an accelerating regime at low redshifts, the matter creation rate proposed here includes a constant term of the order of the Hubble parameter. In this case, H0H_0 does not need to be small in order to solve the age problem and the transition happens even if the matter creation is negligible during the radiation and part of the matter dominated phase. Therefore, instead of the vacuum dominance at redshifts of the order of a few, the present accelerating stage in this sort of Einstein-de Sitter CDM cosmology is a consequence of the gravitational particle creation process. As an extra bonus, in the present scenario does not exist the coincidence problem that plagues models with dominance of dark energy. The model is able to harmonize a CDM picture with the present age of the universe, the latest measurements of the Hubble parameter and the Supernovae observations.Comment: 9 pages, 6 figures, typos corrected, references added, discussion in Appendix B extende

    Plane-symmetric inhomogeneous magnetized viscous fluid universe with a variable Λ\Lambda

    Full text link
    The behavior of magnetic field in plane symmetric inhomogeneous cosmological models for bulk viscous distribution is investigated. The coefficient of bulk viscosity is assumed to be a power function of mass density (ξ=ξ0ρn)(\xi =\xi_{0}\rho^{n}). The values of cosmological constant for these models are found to be small and positive which are supported by the results from recent supernovae Ia observations. Some physical and geometric aspects of the models are also discussed.Comment: 18 pages, LaTex, no figur
    corecore