1,976 research outputs found
Mechanization of and experience with a triplex fly-by-wire backup control system
A redundant three-axis analog control system was designed and developed to back up a digital fly-by-wire control system for an F-8C airplane. Forty-two flights, involving 58 hours of flight time, were flown by six pilots. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum-displacement (force) side stick. The operational reliability of the F-8 digital fly-by-wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed
Comet nongravitational forces and meteoritic impacts
We have considered those comets whose original orbits have been determined to be hyperbolic when only planetary perturbations are accounted for. It is found that formally unbound incident trajectories correlate most confidently with orbits that have small perihelion distances and move in a retrograde sense relative to planetary motion. Arguments are presented that these results are not due to measurement error or to selection effects. We conclude that the phenomenon is attributable to enhanced volatility leading to abnormally large nongravitational forces. Since the effect is absent in the prograde small-perihelia population, increased insolation is not the sole explanation. It is suggested that the significance of the retrograde correlation is connected with a larger energy of relative motion between retrograde comets and a population of prograde ecliptic meteoroids which impact the comet mantle exposing the underlying volatiles. The subsequent enhanced outgassing is the cause of the larger nongravitational forces
Mechanization of and experience with a triplex fly-by-wire backup control system
A redundant three axis analog control system was designed and developed to back up a digital fly by wire control system for an F-8C airplane. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum displacement (force) side stick. The operational reliability of the F-8 digital fly by wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed
Mars and the early Sun
Global mean temperatures near 273 K on early Mars are difficult to explain in the context of standards solar evolution models. Even assuming maximum CO2 greenhouse warming, the required flux is approximately 15 percent too low. Here we consider two astrophysical models that could increase the flux by this amount. The first model is a nonstandard solar model in which the early Sun had a mass somewhat greater than today's mass (1.02-1.06 solar mass). The second model is based on a standard evolutionary solar model, but the ecliptic flux is increased due to focusing by an (expected) heavily spotted early Sun
Settlement of larvae from four families of corals in response to a crustose coralline alga and its biochemical morphogens
Healthy benthic substrates that induce coral larvae to settle are necessary for coral recovery. Yet, the biochemical cues required to induce coral settlement have not been identified for many taxa. Here we tested the ability of the crustose coralline alga (CCA) Porolithon onkodes to induce attachment and metamorphosis, collectively termed settlement, of larvae from 15 ecologically important coral species from the families Acroporidae, Merulinidae, Poritidae, and Diploastreidae. Live CCA fragments, ethanol extracts, and hot aqueous extracts of P. onkodes induced settlement (>10%) for 11, 7, and 6 coral species, respectively. Live CCA fragments were the most effective inducer, achieving over 50% settlement for nine species. The strongest settlement responses were observed in Acropora spp.; the only non-acroporid species that settled over 50% were Diploastrea heliopora, Goniastrea retiformis, and Dipsastraea pallida. Larval settlement was reduced in treatments with chemical extracts compared with live CCA, although high settlement (>50%) was reported for six acroporid species in response to ethanol extracts of CCA. All experimental treatments failed (< 10%) to induce settlement in Montipora aequituberculata, Mycedium elephantotus, and Porites cylindrica. Individual species responded heterogeneously to all treatments, suggesting that none of the cues represent a universal settlement inducer. These results challenge the commonly-held notion that CCA ubiquitously induces coral settlement, and emphasize the critical need to assess additional cues to identify natural settlement inducers for a broad range of coral taxa
Modulating terrestrial impacts from Oort cloud comets by the adiabatically changing galactic tides
Time modulation of the flux of new Jupiter-dominated Oort cloud comets is the subject of interest here. The major perturbation of these comets during the present epoch is due to the tidal field of the relatively smooth distribution of matter in the galactic disk. A secondary source of the near-parabolic comet flux are stars penetrating the inner Oort cloud and providing impulses that create brief comet showers. Substantial stellar-induced showers occur approximately every 100 m.y. Less frequent (but stronger) impulses due to giant molecular clouds can also perturb comets from the inner cloud. These occur on timescales of approximately equal to 500 m.y. In contrast to these infrequent stochastic shower phenomena is the continuously varying tidal-induced flux due to the galaxy. As the Sun orbits the galactic center it undergoes quasiharmonic motion about the galactic midplane, which is superimposed on the small eccentricity, near-Keplerian motion in the plane having epicycle period approximately equal to 150 m.y. In the process the galactic tidal field on the Sun/cloud system will vary causing a modulation of the observable Oort cloud flux. We have created a model of the galactic matter distribution as it affects the solar motion over a time interval ranging from 300 m.y. in the past to 100 m.y. into the future. As constraints on the disk's compact dark matter component we require consistency with the following: (1) the observed galactic rotation curve, (2) today's flux distribution of new comets, (3) the studies of K-giant distributions, and (4) the periodicity found in the terrestrial cratering record. The adiabatically varying galactic tidal torque is then determined and used to predict the time dependence of the flux. We find that a model in which approximately half the disk matter is compact is consistent with these constraints. Under such circumstances the peak-to-trough flux variation will be approx. equal to 5:1 with a full width of 9 m.y. This variability will manifest in the terrestrial cratering record and is consistent with the observed cratering periodicity, if over half of the impacts on Earth are caused by comets or asteroids that originate in the outer Oort cloud
The Structure of GaSb Digitally Doped with Mn
Cross sectional scanning tunneling microscopy (XSTM) and density functional
theory have been used to characterize the structure of GaSb digitally doped
with Mn. The Mn dopants are found in both isolated substitutional form as well
as in large clusters of zinc-blende MnSb commensurate with the surrounding GaSb
matrix. Theoretical calculations predict that these two forms of Mn in the
digitally doped layers will have a very different appearance in XSTM images.
Substitutional Mn enhances the local density of states near the surface, thus
appearing higher in a filled-state image. In contrast, MnSb clusters induce
substantial structural relaxation at the {110} surface, and therefore appear as
localized depressed regions with negligible perturbation of the surrounding
GaSb.Comment: 10 pages, 5 figures, submitted to PRB Brief Report, revised versio
Axisymmetric Stationary Solutions as Harmonic Maps
We present a method for generating exact solutions of Einstein equations in
vacuum using harmonic maps, when the spacetime possesses two commutating
Killing vectors. This method consists in writing the axisymmetric stationry
Einstein equations in vacuum as a harmonic map which belongs to the group
SL(2,R), and decomposing it in its harmonic "submaps". This method provides a
natural classification of the solutions in classes (Weil's class, Lewis' class
etc).Comment: 17 TeX pages, one table,( CINVESTAV- preprint 12/93
Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98644/1/RevSciInstrum_82_113702.pd
Flowering of kiwifruit (Actinidia deliciosa) is reduced by long photoperiods
Mature kiwifruit (Actinidia deliciosa âHaywardâ) vines grown under standard orchard management were exposed to 16-h photoperiods from the longest day in summer until after leaf fall in autumn. Photoperiod extension was achieved with tungsten halogen lamps that produced 2â8 ”mols mâ2 sâ1 photosynthetically active radiation. Long day treatments did not affect fruit dry matter or fruit weight at harvest during the growing season that the treatments were applied or during the following growing season. However, flowering was reduced by 22% during the spring following treatment application. As this reduction in flowering was not accompanied by a decrease in budbreak, the long day effect is not consistent with a delay in the onset of winter chilling. It is suggested therefore, that the observed reduction in flowering may be because of a diminution of floral evocation
- âŠ