12,035 research outputs found

    Nickel oxide photocathodes prepared using rapid discharge sintering for p-type dye-sensitized solar cells

    Get PDF
    This paper compares the photoelectrochemical performances of nickel oxide (NiO) thin films processed using two different sintering procedures: rapid discharge sintering (RDS) and conventional furnace sintering (CS). Prior to sintering, NiO nanoparticles were sprayed onto substrates to form loosely adherent nanoparticulate coatings. After RDS and furnace sintering the resultant NiO coatings were sensitized with erythrosine B dye and corresponding p-type dyesensitized solar cells were fabricated and characterized. NiO electrodes fabricated using the RDS technique exhibited a fourfold enhancement in electroactivity compared to CS electrodes. A possible explanation is the smaller sintered grain size and more open mesoporous structure achieved using the microwave plasma treatments

    Exploration of Lorentz violation in neutral-kaon decay

    Get PDF
    The KLOE collaboration recently reported bounds on the directional dependence of the lifetime of the short-lived neutral kaon KS0K^0_S with respect to the dipole anisotropy of the cosmic microwave background. We interpret their results in an effective field theory framework developed to probe the violation of Lorentz invariance in the weak interaction and previously applied to semileptonic processes, in particular β\beta decay. In this approach a general Lorentz-violating tensor χμν\chi^{\mu\nu} is added to the standard propagator of the WW boson. We perform an exploratory study of the prospects to search for Lorentz violation in nonleptonic decays. For the kaon, we find that the sensitivity to Lorentz violation is limited by the velocity of the kaons and by the extent to which hadronic effects can be calculated. In a simple model we derive the KS0K^0_S decay rate and calculate the asymmetry for the lifetime. Using the KLOE data, limits on the values of χμν\chi^{\mu\nu} are determined.Comment: accepted for publication in Physics Letters

    Focusing Light through Random Photonic Media by Binary Amplitude Modulation

    Get PDF
    We study the focusing of light through random photonic materials using wavefront shaping. We explore a novel approach namely binary amplitude modulation. To this end, the light incident to a random photonic medium is spatially divided into a number of segments. We identify the segments that give rise to fields that are out of phase with the total field at the intended focus and assign these a zero amplitude, whereas the remaining segments maintain their original amplitude. Using 812 independently controlled segments of light, we find the intensity at the target to be 75 +/- 6 times enhanced over the average intensity behind the sample. We experimentally demonstrate focusing of light through random photonic media using both an amplitude only mode liquid crystal spatial light modulator and a MEMS-based spatial light modulator. Our use of Micro Electro-Mechanical System (MEMS)-based digital micromirror devices for the control of the incident light field opens an avenue to high speed implementations of wavefront shaping

    A Comparative Study of the Valence Electronic Excitations of N_2 by Inelastic X-ray and Electron Scattering

    Full text link
    Bound state, valence electronic excitation spectra of N_2 are probed by nonresonant inelastic x-ray and electron scattering. Within the usual theoretical treatments, dynamical structure factors derived from the two probes should be identical. However, we find strong disagreements outside the dipole scattering limit, even at high probe energies. This suggests an unexpectedly important contribution from intra-molecular multiple scattering of the probe electron from core electrons or the nucleus. These effects should grow progressively stronger as the atomic number of the target species increases.Comment: Submitted to Physical Review Letters April 27, 2010. 12 pages including 2 figure pages

    Exploiting speckle correlations to improve the resolution of wide-field fluorescence microscopy

    Get PDF
    Fluorescence microscopy is indispensable in nanoscience and biological sciences. The versatility of labeling target structures with fluorescent dyes permits to visualize structure and function at a subcellular resolution with a wide field of view. Due to the diffraction limit, conventional optical microscopes are limited to resolving structures larger than 200 nm. The resolution can be enhanced by near-field and far-field super-resolution microscopy methods. Near-field methods typically have a limited field of view and far-field methods are limited by the involved conventional optics. Here, we introduce a combined high-resolution and wide-field fluorescence microscopy method that improves the resolution of a conventional optical microscope by exploiting correlations in speckle illumination through a randomly scattering high-index medium: Speckle correlation resolution enhancement (SCORE). As a test, we collect two-dimensional fluorescence images of 100-nm diameter dye-doped nanospheres. We demonstrate a deconvolved resolution of 130 nm with a field of view of 10 x 10 \text{\mu m}^2

    Scattering Lens Resolves sub-100 nm Structures with Visible Light

    Full text link
    The smallest structures that conventional lenses are able to optically resolve are of the order of 200 nm. We introduce a new type of lens that exploits multiple scattering of light to generate a scanning nano-sized optical focus. With an experimental realization of this lens in gallium phosphide we have succeeded to image gold nanoparticles at 97 nm optical resolution. Our work is the first lens that provides a resolution in the nanometer regime at visible wavelengths.Comment: 4 pages, 3 figure

    Generation Expansion Models including Technical Constraints and Demand Uncertainty

    Get PDF
    This article presents a Generation Expansion Model of the power system taking into account the operational constraints and the uncertainty of long-term electricity demand projections. The model is based on a discretization of the load duration curve and explicitly considers that power plant ramping capabilities must meet demand variations. A model predictive control method is used to improve the long-term planning decisions while considering the uncertainty of demand projections. The model presented in this paper allows integrating technical constraints and uncertainty in the simulations, improving the accuracy of the results, while maintaining feasible computational time. Results are tested over three scenarios based on load data of an energy retailer in Colombia

    Lower Cost Lightweight Cold-formed Portal Frames

    Get PDF
    Southern Africa has a dire need for housing small industries and people, and concomitantly the creation of employment. It is common to use hot-rolled steel sections for industrial structures, which are pre-manufactured and then bolted together on site. In this paper an alternative structural concept for low-rise portals for light industries is proposed, whereby the total frame is made up of standard cold-formed sections which are cut and welded together on site. The cladding material is employed as an integral structural component through the principles of stressed skin diaphragm action. A short pile footing is proposed to provide a degree of rotational fixity for the colunns of the frame. Different frame configurations are investigated and the practical application of the concept is discussed
    • …
    corecore