41 research outputs found
Electron exchange model potential: Application to positronium-helium scattering
The formulation of a suitable nonlocal model potential for electron exchange
is presented, checked with electron-hydrogen and electron-helium scattering,
and applied to the study of elastic and inelastic scattering and ionization of
ortho positronium (Ps) by helium. The elastic scattering and the
excitations of Ps are investigated using a three-Ps-state close-coupling
approximation. The higher () excitations and ionization of Ps atom are
treated in the framework of Born approximation with present exchange.
Calculations are reported of phase shifts, and elastic, Ps-excitation, and
total cross sections. The present target elastic total cross section agrees
well with experimental results at thermal to medium energies.Comment: 16 latex pages, 7 postscript figure
S-, P- and D-wave resonances in positronium-sodium and positronium-potassium scattering
Scattering of positronium (Ps) by sodium and potassium atoms has been
investigated employing a three-Ps-state coupled-channel model with Ps(1s,2s,2p)
states using a time-reversal-symmetric regularized electron-exchange model
potential fitted to reproduce accurate theoretical results for PsNa and PsK
binding energies. We find a narrow S-wave singlet resonance at 4.58 eV of width
0.002 eV in the Ps-Na system and at 4.77 eV of width 0.003 eV in the Ps-K
system. Singlet P-wave resonances in both systems are found at 5.07 eV of width
0.3 eV. Singlet D-wave structures are found at 5.3 eV in both systems. We also
report results for elastic and Ps-excitation cross sections for Ps scattering
by Na and K.Comment: 9 pages, 5 figures, Accepted in Journal of Physics
Defining a link with asthma in mice congenitally deficient in eosinophils
Eosinophils are often dominant inflammatory cells present in the lungs of asthma patients. Nonetheless, the role of these leukocytes remains poorly understood. We have created a transgenic line of mice (PHIL) that are specifically devoid of eosinophils, but otherwise have a full complement of hematopoietically derived cells. Allergen challenge of PHIL mice demonstrated that eosinophils were required for pulmonary mucus accumulation and the airway hyperresponsiveness associated with asthma. The development of an eosinophi-less mouse now permits an unambiguous assessment of a number of human diseases that have been linked to this granulocyte, including allergic diseases, parasite infections, and tumorigenesis
Pivotal Advance: Eosinophil infiltration of solid tumors is an early and persistent inflammatory host response
Tumor-associated eosinophilia has been observed in numerous human cancers and several tumor models in animals; however, the details surrounding this eosinophilia remain largely undefined and anecdotal. We used a B16-F10 melanoma cell injection model to demonstrate that eosinophil infiltration of tumors occurred from the earliest palpable stages with significant accumulations only in the necrotic and capsule regions. Furthermore, the presence of diffuse extracellular matrix staining for eosinophil major basic protein was restricted to the necrotic areas of tumors, indicating that eosinophil degranulation was limited to this region. Antibody-mediated depletion of CD4+ T cells and adoptive transfer of eosinophils suggested, respectively, that the accumulation of eosinophils is not associated with T helper cell type 2-dependent immune responses and that recruitment is a dynamic, ongoing process, occurring throughout tumor growth. Ex vivo migration studies have identified what appears to be a novel chemotactic factor(s) released by stressed/dying melanoma cells, suggesting that the accumulation of eosinophils in tumors occurs, in part, through a unique mechanism dependent on a signal(s) released from areas of necrosis. Collectively, these studies demonstrate that the infiltration of tumors by eosinophils is an early and persistent response that is spatial-restricted. It is more important that these data also show that the mechanism(s) that elicit this host response occur, independent of immune surveillance, suggesting that eosinophils are part of an early inflammatory reaction at the site of tumorigenesis. © Society for Leukocyte Biology